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Abstract. Grey-box neural models mix differential equatiomdjich act as
white boxes, and neural networks, used as blacleokhe purpose of the
present work is to show the training of a grey-boxdel by means of indirect
backpropagation and Levenberg-Marquardt in M&tlaéxtending the black
box neural model in order to fit the discretized uatipns of the
phenomenological model. The obtained grey-box rasletested as an
estimator of a state variable of a biotechnolodizdth fermentation process on
solid substrate, with good results.

1 Introduction

The determination of relevant variables or pararseti@improve a complex process
is a demanding and difficult task. This gives risathte need to estimate the variables
that cannot be measured directly, and this in t@quires a software sensor to
estimate those variables that cannot be measurbaeofi].

An additional problem is the one consisting of adeicthat has parameters that
vary in time, because a strategy must be appliadewtify such parameters on line
and in real time [2]. A methodology that is usedhiase cases, especially in the field
of chemical and biotechnological processes, is dfidihe so-called grey-box models
[3]. These are models that include a limited phematwgical model which is
complemented with parameters obtained by meanswhhnetworks.

The learning or training strategies used so famgfer-box neural models assume
the existence of data for the parameters obtaiggtidoneural model [4], but most of
the time this is not possible. This paper proposiaining process that does not use
learning data for the neural network part, instdmtkpropagating through the
phenomenological model the error at its output,wédls be detailed below. The
creation of the proposed model, the training ardsimulations were all carried out
using the Matlab development tool.



2 Grey-Box Models

Grey-box neural models are used for systems in hwhiere is somea priori
knowledge, i.e., some physical laws are known, &mmne parameters must be
determined from the observed data.

Acufia et al. [5] distinguish between two methodstmafining. The first one
corresponds to direct training (Fig. 1(a)), whickesi the error originated at the output
of the neural network for the correct determinatmntheir weights. The second
method is indirect training (Fig. 1(b)), which ugbs error originated at the model's
output for the purpose of learning by the neurdivoek. Indirect training can be
carried out in two ways, one by minimizing an olijge function by means of a
nonlinear optimization technique, and the othebysbackpropagating the output
error over the weights of the neural network takintp account the discretized
equations of the phenomenological model.

Inputs Phenomenological Output Inputs Outputs

- Phenomenological
> Dynamic Model. L

Dynamic Model,

v

Error

r r s

Parameters Parameters

| (a) K (b)

Fig. 1. (a) Grey-box model with direct training. (b) Grbgx model with indirect training.
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In this paper the second indirect training meth®dised, calculating the error at
the output of the phenomenological model, and baxpanating it from there to the
model's neural part or black-box part.

The backpropagation process considers a networkwithputs and p outputs, n
neurons in an intermediate layer, and d data fminitrg. The computed gradients,
depending on the the activation and the transterctfon used, are shown in Table 1
and Table 2 respectively, wheréi,-vis the weight of the connection from neuron i to
neuron j in layer k, A is the activation value of neuron i of layer kdazf; is the
transfer value of neuron i from layer k (outpunefuron i).

Table 1. Gradients depending on the activation functioreglue the neurons.
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Table 2. Gradients depending on the transfer functions uséte neurons.
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3 Biotechnological Process

In this paper a grey-box neural model is proposadtlie simulation of a batch
fermentation bioprocess on a solid substrate, spaeding to the production of
gibberellic acid from the philamentous fundsibberella fujikuroi.

A simplified model describes the evolution of theaim variables [6]. This
phenomenological model based on mass conservatws Iconsiders 8 state
variables: active biomass (X), measured biomass(X urea (U), intermediate
nitrogen (N), starch (S), gibberellic acid (GA carbon dioxide (Cg and oxygen
(Oy). Only the last two variables can be measuredctijreon line. The model's
equations discretized by Euler's method and corniegleliscrete time t and t+1 are

the following:
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The measured outputs are the following:

¥ = COyt41) ©)

Y2 = Op(t+1) (10)

On the other hand, the parameters that are difficulobtain and that will be
estimated by the model's neural part areand B, corresponding to the specific

growth rate and specific production rate of gibbiereacid, respectively. The

remaining parameters were identified on the badisspecific practices and

experimental conditions. Their values under corgtbivater temperature and activity
conditions (T=25 °C, Aw=0.992) can be found in [6].

4 Proposed Solution

The proposed solution is a grey-box neural modelsghthenomenological part can
be described jointly with its black-box part, byans of an extended neural network
containing both, the discretized equations of then@menological model and the
time-varying parameters modeled by the black-bax (fg. 2). This hybrid neural
network has the capacity to fix weights in thertiray phase, so that it can act as a
grey-box model. The weights in Fig. 2 that have xadivalue correspond to the
model's phenomenological part. The weights for wimohvalue is given correspond
to the model's neural part. These weights wereallyitiassigned pseudo-random
values obtained by the initialization method of Mg & Widrow [7].

In Fig. 2 it is seen that one of the weights cqroesling to the white-box or
phenomenological part is graphed as a dotted Tih&s line represents the switching
phenomena that is seen in the fourth state vari@tein the mathematical model,
i.e., if the urea (U) is greater than or equaleoz this weight has the indicated value,
otherwise, if urea (U) is less than zero, this Welas a value of zero.

Therefore, the multilayer perceptron, inserted mmiodel, estimates the values of
the two parameters that are difficult to obtaing am turn they are mixed with the
phenomenological part of the model, in that wayaotihg its output.

For the black-box neural part the hyperbolic tangess used as transfer functions
in the intermediate layer and the identity functionthe output layer, while for the
phenomenological part the identity function wasduae transfer function.

The activation function most currently used wasghm of the inputs, except for
the two neurons immediatelly after the output @& titack-box neural part, for which
a product was used as activation function in orterfollow the discretized
phenomenological equations.
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Fig. 2. Grey-box model for the solid substrate fermentafoocess. Fixed weights represent
the discretized phenomenological model. The blamkpart that models the unknown time-
varying parameters p arfdhas variable weights. The dotted line represergwitch on the

model of the state variable (N



The training algorithm used corresponds to backmapan with a Levenberg-
Marquardt optimization method. As it was alreadgtest, the algorithm has the
capacity to modify only the weights that are intich therefore leaving a group of
fixed weights which, represent the model's phenaiogyical part in the training
phase.

For the validation of the proposed grey-box neumabtel, quality indexs such as
IA (Index of Agreement), RMS (Root Mean Square) &@D (Relative Standard
Deviation) are calculated, and the values consilaceeptable for these indexs are
IA>0.9, RMS<0.1 and RSD<0.1. The quality indexs eiqua are the following:

(11)

where @and p are the observed and predicted values, respegtalime i, and N is
the total number of data. Then'Ap;-0,, and ¢=0;-0,, where @, is the mean value of
the observations.

5 Simulation and results

For the simulation, tests were carried out for daiilh 5% error and an erroneous
initial biomass value. The simulation was made using thousand examples. The
initial conditions under normal operation were thiowing:

4
X(O):I:O 0.0040 0.0040 0.5*10  0.0040 0 o](

Case 1: Simulation with 5% noise

The first case evaluated corresponds to the sirulatith 5% noise in the input data.
Fig. 3(a) shows the real and estimated biomasghik case the quality indexs
obtained were the following: 1A=0.99, RMS=0.5E-1deRSD=0.8E-3.

Case 2: Simulation with noise in the data and erroneous initial condition in the
biomass

The second case evaluated corresponds to the sonukéth 5% noise in the data in
addition to an erroneous initial biomass conditiath an error of 250%, to verify the
convergence of the model acting as a software s@fidgnomass. Fig. 3(b) shows the
model's response, where the real and the estinibtedass are seen. The quality
indexs were 1A=0.93, RMS=0.24 and RSD=0.41E-2hla tase the RMS index does
not fulfill the acceptable condition (RMS<0.1), hthis is due to the nature of the



introduced error, because the model takes aboutit8€dtions to fit the estimated
curve to the real value. This simulation, howevémves the convergence of the
software sensor based on the grey-box model,is@dnsidered acceptable.
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Fig. 3. (a) Real and estimated biomass for case 1 (b) &ehéstimated biomass for case 2

6 Conclusions

Grey-box neural models are a real alternative fadefing real world processes.
They have advantages over black-box models becaegeare supported by the
priori knowledge available on the process.

The model proposed in this paper combines the phenolwgical equations of the
process with a multilayer perceptron neural netwhelt estimates the unknown time-
varying parameters within a extended neural netwfok carrying out the
backpropagation process. The use of fixed and Jariakights and new activation
functions were needed in order to fit the discestiphenomenological model thus
slightly changing the standard backpropagation otkthsually found in available
neural network softwares.

Good results when using the trained model as avaodt sensor for estimating
biomass concentration in a biotechnological progese shown.
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