
Indirect Training of Grey-Box Models: Application to a 
Bioprocess 

Francisco Cruz, Gonzalo Acuña, Francisco Cubillos,  
Vicente Moreno, Danilo Bassi 

 
Facultad de Ingeniería, Universidad de Santiago de Chile, USACH 

Av. Libertador Bernandor O’Higgins 3363, Santiago, Chile 
francisco928@gmail.com, gacuna@usach.cl 

Abstract. Grey-box neural models mix differential equations, which act as 
white boxes, and neural networks, used as black boxes. The purpose of the 
present work is to show the training of a grey-box model by means of indirect 
backpropagation and Levenberg-Marquardt in Matlab®, extending the black 
box neural model in order to fit the discretized equations of the 
phenomenological model.  The obtained grey-box model is tested as an 
estimator of a state variable of a biotechnological batch fermentation process on 
solid substrate, with good results. 

1   Introduction 

The determination of relevant variables or parameters to improve a complex process 
is a demanding and difficult task. This gives rise to the need to estimate the variables 
that cannot be measured directly, and this in turn requires a software sensor to  
estimate those variables that cannot be measured on line [1]. 

An additional problem is the one consisting of a model that has parameters that 
vary in time, because a strategy must be applied to identify such parameters on line 
and in real time [2]. A methodology that is used in these cases, especially in the field 
of chemical and biotechnological processes, is that of the so-called grey-box models 
[3]. These are models that include a limited phenomenological model which is 
complemented with parameters obtained by means of neural networks. 

The learning or training strategies used so far for grey-box neural models assume 
the existence of data for the parameters obtained by the neural model [4], but most of 
the time this is not possible. This paper proposes a training process that does not use 
learning data for the neural network part, instead backpropagating through the 
phenomenological model the error at its output, as will be detailed below. The 
creation of the proposed model, the training and the simulations were all carried out 
using the Matlab development tool.  



2   Grey-Box Models 

Grey-box neural models are used for systems in which there is some a priori 
knowledge, i.e., some physical laws are known, but some parameters must be 
determined from the observed data. 

Acuña et al. [5] distinguish between two methods of training. The first one 
corresponds to direct training (Fig. 1(a)), which uses the error originated at the output 
of the neural network for the correct determination of their weights. The second 
method is indirect training (Fig. 1(b)), which uses the error originated at the model's 
output for the purpose of learning by the neural network. Indirect training can be 
carried out in two ways, one by minimizing an objective function  by means of a 
nonlinear optimization technique, and the other is by backpropagating the output 
error over the weights of the neural network taking into account the discretized 
equations of the phenomenological model. 
 

 (a)  (b)  

Fig. 1. (a) Grey-box model with direct training. (b) Grey-box model with indirect training. 

In this paper the second indirect training method is used, calculating the error at 
the output of the phenomenological model, and backpropagating it from there to the 
model's neural part or black-box part. 

The backpropagation process considers a network with m inputs and p outputs, n 
neurons in an intermediate layer, and d data for training. The computed gradients, 
depending on the the activation and the transfer  function used, are shown in Table 1 
and Table 2 respectively, where wk

ij is the weight of the connection from neuron i to 
neuron j in layer k, Aki is the activation value of neuron i of layer k, and Zk

i is the 
transfer value of neuron i from layer k (output of neuron i). 

Table 1. Gradients depending on the activation functions used in the neurons. 

f Sum Product 

1k
c

k
j

A

Z

+∂
∂

 

1k
jcw +

 
1

1 1

( ) ( )k k
jc q

q q
q j

w Z+

= =
≠

⋅∏ ∏
 

k
j

k
ij

A

w

∂
∂

 

k
jZ
 

1

1 1

( ) ( )k k
qj q

q q
q j

w Z −

= =
≠

⋅∏ ∏
 



Table 2. Gradients depending on the transfer functions used in the neurons. 
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3   Biotechnological Process 

 
In this paper a grey-box neural model is proposed for the simulation of a batch 
fermentation bioprocess on a solid substrate, corresponding to the production of 
gibberellic acid from the philamentous fungus Gibberella fujikuroi.  

A simplified model describes the evolution of the main variables [6]. This 
phenomenological model based on mass conservation laws considers 8 state 
variables: active biomass (X), measured biomass (Xmeasu), urea (U), intermediate 
nitrogen (NI), starch (S), gibberellic acid (GA3), carbon dioxide (CO2) and oxygen 
(O2). Only the last two variables can be measured directly on line. The model's 
equations discretized by Euler's method and considering discrete time t and t+1 are 
the following: 

 

( )( 1) ( ) ( )X X X tmeasu t measu t tµ= + ⋅ ⋅ ∆+      (1) 

( )( 1) ( ) ( ) ( )X X X k X tt t t d tµ= + ⋅ − ⋅ ⋅ ∆+      (2) 

( )( 1) ( )U U k tt t= + − ⋅ ∆+        (3) 
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The measured outputs are the following: 
 

1 2( 1)y CO t= +         (9) 

2 2( 1)y O t= +         (10) 

 
On the other hand, the parameters that are difficult to obtain and that will be 

estimated by the model's neural part are µ  and β , corresponding to the specific 
growth rate and specific production rate of gibberellic acid, respectively. The 
remaining parameters were identified on the basis of specific practices and 
experimental conditions. Their values under controlled water temperature and activity 
conditions (T=25 ºC, Aw=0.992) can be found in [6]. 

4   Proposed Solution 

The proposed solution is a grey-box neural model whose phenomenological part can 
be described jointly with its black-box part, by means of an extended neural network 
containing both, the discretized equations of the phenomenological model and the 
time-varying parameters modeled by the black-box part (Fig. 2). This hybrid neural 
network has the capacity to fix weights in the training phase, so that it can act as a 
grey-box model. The weights in Fig. 2 that have a fixed value correspond to the 
model's phenomenological part. The weights for which no value is given correspond 
to the model's neural part. These weights were initially assigned pseudo-random 
values obtained by the initialization method of Nguyen & Widrow [7]. 

In Fig. 2 it is seen that one of the weights corresponding to the white-box or 
phenomenological part is graphed as a dotted line. This line represents the switching 
phenomena that is seen in the fourth state variable (NI) in the mathematical model, 
i.e., if the urea (U) is greater than or equal to zero, this weight has the indicated value, 
otherwise, if urea (U) is less than zero, this weight has a value of zero. 

Therefore, the multilayer perceptron, inserted in the model, estimates the values of 
the two parameters that are difficult to obtain, and in turn they are mixed with the 
phenomenological part of the model, in that way obtaining its output. 

For the black-box neural part the hyperbolic tangent was used as transfer functions 
in the intermediate layer and the identity function in the output layer, while for the 
phenomenological part the identity function was used as transfer function. 

The activation function most currently used was the sum of the inputs, except for 
the two neurons immediatelly after the output of the black-box neural part, for which 
a product was used as activation function in order to follow the discretized 
phenomenological equations. 



 

Fig. 2. Grey-box model for the solid substrate fermentation process. Fixed weights represent 
the discretized phenomenological model. The black-box part that models the unknown time-
varying parameters µ and β has variable weights. The dotted line represents a switch on the 
model of the state variable (NI) 

 



The training algorithm used corresponds to backpropagation with a Levenberg-
Marquardt optimization method. As it was already stated, the algorithm has the 
capacity to modify only the weights that are indicated, therefore leaving a group of 
fixed weights which, represent the model's phenomenological part in the training 
phase. 

For the validation of the proposed grey-box neural model, quality indexs such as 
IA (Index of Agreement), RMS (Root Mean Square) and RSD (Relative Standard 
Deviation) are calculated, and the values considered acceptable for these indexs are 
IA>0.9, RMS<0.1 and RSD<0.1. The quality indexs equations are the following: 

 

( )

( )
( ) ( )2 2 2

1 1 1
2

2

11

1
' '

n n n

i i i i i i
i i i

nn

ii i
ii

p p p
IA RMS RSD

Np

ο ο ο

οο
= = =

==

− − −
= − = =

+

∑ ∑ ∑

∑∑

   (11) 

 
where oi and pi are the observed and predicted values, respectively, at time i, and N is 
the total number of data. Then, pi’=pi-om and oi’=oi-om, where om is the mean value of 
the observations. 

5   Simulation and results 

For the simulation, tests were carried out for data with 5% error and an erroneous 
initial biomass value. The simulation was made using one thousand examples. The 
initial conditions under normal operation were the following: 
 

(0)
4

0 0.0040 0.0040 0.5 * 10 0.0040 0 0 0X =
−    

Case 1: Simulation with 5% noise 

The first case evaluated corresponds to the simulation with 5% noise in the input data. 
Fig. 3(a) shows the real and estimated biomass. In this case the quality indexs 
obtained were the following: IA=0.99, RMS=0.5E-1 and RSD=0.8E-3. 

Case 2: Simulation with noise in the data and erroneous initial condition in the 
biomass 

The second case evaluated corresponds to the simulation with 5% noise in the data in 
addition to an erroneous initial biomass condition with an error of 250%, to verify the 
convergence of the model acting as a software sensor of biomass. Fig. 3(b) shows the 
model's response, where the real and the estimated biomass are seen. The quality 
indexs were IA=0.93, RMS=0.24 and RSD=0.41E-2. In this case the RMS index does 
not fulfill the acceptable condition (RMS<0.1), but this is due to the nature of the 



introduced error, because the model takes about 300 iterations to fit the estimated 
curve to the real value. This simulation, however, shows the convergence of the 
software sensor based on the grey-box model, so it is considered acceptable.  
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Fig. 3. (a) Real and estimated biomass for case 1 (b) Real and estimated biomass for case 2 

6   Conclusions 

Grey-box neural models are a real alternative for modeling real world processes. 
They have advantages over black-box models because they are supported by the a 
priori knowledge available on the process. 

The model proposed in this paper combines the phenomenological equations of the 
process with a multilayer perceptron neural network that estimates the unknown time-
varying parameters within a extended neural network for carrying out the 
backpropagation process. The use of fixed and variable weights and new activation 
functions were needed in order to fit the discretized phenomenological model thus 
slightly changing the standard backpropagation method usually found in available 
neural network softwares. 

Good results when using the trained model as a software sensor for estimating 
biomass concentration in a biotechnological process were shown. 
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