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Abstract—Most of the automatic fire alarm systems detect the
fire presence through sensors like thermal, smoke, or flame. One
of the new approaches to the problem is the use of images to
perform the detection. The image approach is promising since
it does not need specific sensors and can be easily embedded
in different devices. However, besides the high performance,
the computational cost of the used deep learning methods is a
challenge to their deployment in portable devices. In this work,
we propose a new deep learning architecture that requires fewer
floating-point operations (flops) for fire recognition. Additionally,
we propose a portable approach for fire recognition and the use of
modern techniques such as inverted residual block, convolutions
like depth-wise, and octave, to reduce the model’s computational
cost. The experiments show that our model keeps high accuracy
while substantially reducing the number of parameters and
flops. One of our models presents 71% fewer parameters than
FireNet, while still presenting competitive accuracy and AUROC
performance. The proposed methods are evaluated on FireNet
and FiSmo datasets. The obtained results are promising for the
implementation of the model in a mobile device, considering the
reduced number of flops and parameters acquired.

Index Terms—deep learning, portable models, fire recognition

I. INTRODUCTION

The fire alarm systems are a combination of sensors and
machine learning algorithms to identify patterns of warning.
Usually, the sensor system is composed of: (i) heat or temper-
ature detectors, which typically are not early warning devices;
(ii) flame detectors that habitually are built-on optical, UV,
and IR sensors; and (iii) smoke detectors, frequently using
photoelectric, ionization, or a combination of both. The use
of images to fire recognition is a new promising approach
[1], based on the excellent results that deep learning models
are obtaining in image processing applications [2] allowing to
avoid the use of special sensors to perform the recognition.

The Deep Learning (DL) approach [3] has proved to be
suitable for automating the feature acquisition from complex
data in machine learning tasks. In such a way, DL works in
multiple levels of abstraction for data representation. Con-
sidering that, the use of computer vision to fire recognition
reduces the necessity of specific sensors, being suitable for
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the inlay to portable, remote, and mobile devices. However,
DL approaches have some challenges: (i) the required com-
putational resources; (ii) the model’s computation complexity
and size; and (iii) the quantity of data needed for its training,
among others. The previously mentioned challenges can be
tackled by focusing on the development of deep learning
models for mobile devices [4], which has been a less explored
area in DL literature. For robotics or autonomous systems
being portables, they must be capable of working with limited
processing power, storage, and energy, besides providing an
efficient inference time.

Some works have addressed portable models of deep learn-
ing using more efficient ways to compute the convolutions,
such as presented by Sandler et al. [S]. The authors proposed
the inverted residual block (see Figure 1(a)) with point-wise
and depth-wise convolutions to simplify the dimensionality
of the signal processing. Thus, the proposed deep model
offers an interesting trade-off between accuracy, the number
of operations, and the number of parameters considering
other models such as ShuffleNet [6] and NasNet [7]. Another
efficient approach for portable models is the work presented by
Chen et al. [8], the octave convolution (see Figure 1(b)), which
reduces the spatial redundancy of the signal, separating into a
high and low spatial frequency for processing. In this case, the
size of the separation depends on an « ratio, which defines the
octave feature representation factorizing the feature map into
groups for each frequency. The « value also establishes the
quantity of memory, operations, and the number of parameters
reduced for the model.

In this paper, we propose a new deep learning model for fire
recognition called KutralNet!, which comprises five layers and
require 92% fewer floating-point operations (flops) for pro-
cessing in comparison with previous approaches. This model is
used as a baseline to build portable models that compare the ef-
ficiency in signal processing of the inverted residual block, the
depth-wise convolution, and octave convolution approaches.

'We took inspiration from Mapuche language or Mapudungun where kiitral
means fire.
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(a) The inverted residual block. Diagonally hatched layers do not use non-
linearities. The thickness of each block is used to indicate its relative number

of channels. The inverted residuals connect the bottlenecks. Adapted from [5].
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(b) Detailed design of the octave convolution. Green arrows correspond to
information updates, while red arrows facilitate information exchange between
the two frequencies. Adapted from [8].

Fig. 1. The fundamental convolutional blocks used in this work.

Our best resultant model, KutralNet Mobile Octave, presents
a competitive validation accuracy and AUROC performance
despite using 71% fewer numbers of parameters in comparison
with FireNet. We compare the proposed models with state-of-
the-art approaches to fire recognition over the FireNet and
FiSmo datasets.

In Section II, we present related works. Section III the
proposed model. Section IV presents the experiment setup and
in Section V, the results and discussion. Section VI presents
the final remarks.

II. RELATED WORKS

In the last years, multiple methods to automate fire recogni-
tion were proposed, most of them from video surveillance sys-
tems, such as Closed Circuit TV systems. Some surveillance
equipment uses cameras with low resolution, at a flat frame
rate, or with no storage option, and others more sophisticated
ones with proper image resolution cameras.

The first approaches to fire recognition in computer vision
were addressed using techniques based on RGB color space
[9], spectral color [10], texture recognition [11], and spatio-
temporal treatment [12]. The most recent methods correspond
to deep neural networks, especially convolutional neural net-
works (CNNs). Many of the DL implementations [13]-[15]
were built on previously trained models such as ResNet and
its variations [16]. Recently, it has been widespread the use of
the DL method combined with fine-tuning or transfer-learning
techniques. This complement solves the lack of data for
training deep models; the only issue is the size and complexity
constraint of the network.

A new lightweight model, FireNet, was proposed by Jadon
et al. [17], who present a dataset for training and test a
model from scratch considering a fire and smoke detection
system. The model’s architecture presents three consecutive
convolution blocks before the classifier, and each convolution
block contains a convolution layer, an average pooling layer,
and a dropout normalization layer. The classifier is composed
of three fully connected hidden layers and is capable of
processing images with a maximum size of 64x64 pixels

on RGB channels. Other model trained from scratch is Oct-
FiResNet [18]. This model is based on the initial blocks
of ResNet, replacing the vanilla convolution with the octave
convolution. For this model, the optimizer corresponds to
the Adam algorithm with Nesterov momentum and hyper-
parameters settled to @ = 107% and ¢ = 1077, to process
images of 96x96 pixels. Likewise, a well-known deep learning
model, ResNet [16] with its depth-dependent variations, is
used in this task. In this case, the ResNet50’s architecture
presents a slight modification of the classifier on the top of the
model [13], using transfer-learning over a pre-trained model
where the first layers perform the feature mapping of an image
of 224x224 pixels.

Currently, most of the models developed using DL tech-
niques are focused on the results, leaving in second place
the resources needed for the execution of the algorithm. The
development of algorithms for mobile devices must be focused
on the duration of the battery, optimizing its performance and
autonomy. A DL model must be efficient enough to work in
real-time to be suitable for running in a hardware-restricted
system or mobile devices. For example, the development of
the fire recognition DL model can work in the mobile vehicle
system for fire detection proposed by Madhevan et al. [19].

III. THE KUTRALNET ARCHITECTURE

The KutralNet model proposal for fire recognition is in-
tended to reduce the complexity of a deep learning model to
process an image and decides if it has or not fire presence. This
proposal sets a baseline model in order to develop portable
models that are well suited for limited hardware devices.

A. Baseline model’s architecture

The baseline for the KutralNet model is inspired by FireNet,
OctFiResNet, and the modified ResNet50 models. Our Ku-
tralNet is the result of mixing between a deep model and a
lightweight one, capable of processing 84x84 pixels images
in RGB channels. The model can be seen in Figure 2. The
first three blocks consist of convolution with no bias and
a 3x3 filters layer, followed by a batch-normalization layer,
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Fig. 2. The KutralNet architecture works with images of 84x84 pixels in
RGB channels. Only the first three convolution layer blocks keep the image
dimensions. To the classifier, a global average pooling delivers the features
to the fully connected (FC) layer with two outputs, one for the fire label and
another for the no-fire label. Consecutively, a softmax function is implemented
as activation at the top of the network.

continuing with a LeakyReLU activation, and finally, a max-
pooling with kernel 2x2 and stride 2. When the signal passes
from one block to another, it increases the number of the filters
and reduces the dimension. For the last block, two convolution
layers and a batch-normalization layer are present. The first
convolution of 1x1 reduces the number of filters, and the
second convolution of 3x3 processes the filters finishing with
64 channels. A shortcut, of a 2x2 max-pooling layer with stride
2 and a batch-normalization layer, connects from the second
block with the final convolution block. On the top of the layer
after the shortcut, the signal passes through a LeakyReLU
activation and a global average pooling layer to the classifier,
which consists of a fully connected layer with two neurons
in the exit. This architecture is defined for processing low-
dimension images in a lightweight configuration. It has been
proved that few layers are capable of acquiring enough features
for fire classification in order to optimize the inference time
[17]. Additionally, using shortcut and batch-normalization
layers avoids overfitting the model [16]. We have chosen
LeakyReLU since a non-zero slope for negative part improves
the results [20] and presents a low-cost implementation.

The models’ summary with the parameter numbers and
operations required for image processing is in Table I. The
flops value for the FireNet model is not presented due to the
instability during measurement, which increase the value over
each run.

B. Portable version implementations

The KutralNet model is the baseline used here to develop
portable models, focusing on reducing the model size and
computational cost. The octave and depth-wise convolution

way the mathematical complexity of the operation. For the
octave convolution, the separate ways to process the filters on
high and low frequency computing the parameters information
W into two components W = [Wg, W] and exchanging
information between them. Additionally, these convolution
techniques, used in different deep learning model architectures,
and various tasks such as classification, object detection, and
semantic segmentation, achieve a model size reduction, less
computational requirements, and a slightly better performance
in some cases. This is useful for our purpose, and we present a
new type of convolution combining the depth-wise convolution
with its group filter operations and the octave convolution,
which achieves a valuable trade-off between accuracy, model
size, and computational cost. Our different portable versions
implemented are as follows:

o KutralNet Mobile: It is inspired by MobileNetV2 [5]
and presents the implementation of the inverted residual
block. In this approach, from the second block, the
KutralNet convolution blocks were replaced with the
inverted residual block, in which each block contains
point-wise and depth-wise convolution with shortcut con-
nections in some cases.

KutralNet Octave: It is based on the KutralNet’s ar-
chitecture, and all the vanilla convolution were replaced
with octave convolution with an o« parameter of 0.5.
Thus, the octave convolution uses the 50% for the octave
feature representation, which corresponds to the low-
frequency channel dealing with global features, and the
rest for the high-frequency channel dealing with specific
features. Additionally, the octave convolution works using
the depth-wise convolution form where it is possible.
KutralNet Mobile Octave: It is the combination of
the MobileNetV2 block and the octave convolution. It
is the same KutralNet Mobile but replacing the vanilla
convolution with the octave convolution combined with
depth-wise convolution form. The resultant block can be
seen in Figure 3.

All the portable models present the same classifier on the
top of the network, which is composed of a LeakyReLU
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Fig. 3. KutralNet Mobile Octave model resultant block. The most to left and right of the block present a point-wise convolution and, in the middle, the
depth-wise convolution, all combined with the octave convolution with o = 0.5.

TABLE 11
THE COMPUTATIONAL COST OF EACH KUTRALNET PORTABLE VARIATION
REPRESENTED AS PARAMETERS AND FLOPS.

Model(1,,put5ize) Parameters Flops
KutralNet<84I84) 138.91K 76.85M
KutralNet Mobile(g4,84) 173.09K 43.27TM
KutralNet Octave (g4zg4) 125.73K 29.98M
KutralNet Mobile Octave(gy.g4) 185.25K 24.59M

activation, passing through a global average pooling layer
directly to a fully connected layer with two neurons on the
exit. Additional details of the implementations can be seen
on the project repository?. A summary of the parameters and
operations of the KutralNet models can be seen in Table II. The
number of floating-point operations (flops) and the number of
parameters for a model are the metrics defined to measure
the model requirements for image processing and storage,
respectively. The fewer parameters, the less on-disk size, is
required. Moreover, as fewer the number of flops, less is the
computational cost for processing. As the focus of our work
is on develop a mobile deep learning model, the less value
on both metrics, the best suited is the model for this purpose.
For the case of the Mobile and Mobile Octave variations, the
models present a higher number of parameters but with a high
flops reduction than the baseline.

IV. EXPERIMENTAL SETUP

The environment used for the experiments was Google
Colab, an online open cloud platform for machine learning
algorithms. This online platform provides a ready to use
ecosystem with all the required libraries installed, e.g., for
data manipulation, data visualization, and for the training
process. The container of the environment was a virtual
machine configured with up to 13GB of memory, an Intel

2Github repository https://github.com/angel-ayala/kutralnet

Xeon@2.30GHz, and an Nvidia Tesla K80 with 12GB of GPU
memory.

Our first experiment aimed to define a baseline model and
prove its effectiveness to fire recognition. For this purpose,
three different models were implemented for comparing the
baseline. The first model is a novel lightweight model for fire
recognition, the FireNet model [17], which is implemented in
a Raspberry Pi as part of a fire alarm system. A second model
is a modified version of ResNet50 [13] used with the transfer-
learning technique for training the classifier on the top of the
network with fire and no-fire images. Another implemented
model is OctFiResNet [18], a proposal to lightweight and
efficient model, based on the ResNet model, with few layers
and octave convolutions. The final implemented model is our
proposal, KutralNet, to address a computationally efficient
and lightweight deep neural network, balancing between the
parameters and effectiveness. Just for the case of KutralNet,
during the training stage, present a learning rate variation from
a = 107* to @ = 107° on the epoch 85. The trained and
evaluated KutralNet is the baseline for the portable approaches.

With the defined baseline, the next set of experiments aimed
to reduce the operations required for processing the images for
fire recognition of the KutralNet model. In order to reduce
the operations required, techniques such as the depth-wise
convolution presented with an inverted residual block in [5]
and the octave convolution presented by Chen et al. [8] were
implemented separately at first and mixed later to check their
compatibility and efficiency. This reduction results in three dif-
ferent models named: (i) KutralNet Mobile for the one where
uses the inverted residual block, inspired in MobileNetV2; (ii)
KutralNet Octave is called the model which uses the octave
convolution with a reduction parameter o« = 0.5 combined
with the depth-wise convolution, requiring fewer operations
and space to store the model; and (iii) KutralNet Mobile
Octave, which uses the inverted residual block in combination
with the octave convolution using the depth-wise form.

The training of all the models was performed during 100



TABLE III
QUANTITY OF IMAGES PER LABEL PRESENT ON THE PARTICULAR
DATASET PRESENTED FOR THIS WORK.

Dataset Fire No Fire Total
FireNet (training) 1124 1301 2425
FireNet (testing) 593 278 871

FiSmo 2004 4059 6063
FiSmoA 2004 4544 6548
FiSmoB 984 984 1968
FiSmoBA 984 984 1968

epochs to choose the model with the best validation accuracy.
All of them were trained using cross-entropy loss and the
Adam optimizer with default parameters, except for those
previously mentioned. For testing, two metrics were used to
compare the efficiency of each model, the Receiver Operating
Characteristics (ROC) curve and the area under the ROC curve
(AUROQ).

A. Datasets

For the training, validation, and test of the models, two
datasets were used in this work. The first one is called FireNet
as the model [17] and contains training and test subsets,
with 2425 and 871 images, respectively. The second one is
the FiSmo dataset proposed by Cazzolato et al. [21], which
has been recently published with a total of 6063 images.
Additionally, we have used a contained subset of FiSmo
comprised of 1968 images equally balanced between the fire
and no-fire label. An augmented version of FiSmo is also
used, adding 485 black images labeled as no-fire, in order to
check out the models’ response to this kind of augmentation.
In addition to the balanced FiSmo version, we have also used
an augmented version of this subset, which replaces 98 no-fire
images for black images. More details of the dataset images
are in Table III, where FiSmoA is the augmented version
of FiSmo, FiSmoB is the balanced version of FiSmo, and
FiSmoBA is the augmented balanced version of FiSmo.

The datasets were used with the same specifications pre-
sented in their original works. For the case of FireNet, the
training dataset is split into 70% for training and 30% for
validation, with a whole new dataset included for test purposes.
For FiSmo dataset, an arbitrary split value of 80% for training
and 20% for validation separates the images of the dataset,
due to only a single implementation for model training has
been found. The augmented version presents the same dataset
separation, from the 485 black images inserted, 388 corre-
spond to training and 97 for validation. For preprocessing, the
images were rescaled to the image input size of each model
and normalized with values € [0, 1].

V. RESULTS AND DISCUSSION

The next two subsections separate the experiments in order
to achieve a portable deep learning model for fire recognition.
The first experimentation was with the proposed baseline
model KutralNet, which uses novel deep learning techniques

for image classification. Experimentation results compare Ku-
tralNet with other previously presented deep learning models.
After the comparison with our baseline, the final experimen-
tation allowed us to optimize the computational cost of the
model, exploring the benefits of different portable approaches
presented in the last years as the inverted residual block, the
depth-wise, and octave convolution. The different proposals
got almost the same accuracy as the baseline model.

A. Baseline comparison

The baseline comparison is performed with three deep
models, in order to improve the results of our proposed model,
focusing on efficiency and lightweight. The first model is
FireNet from Jadon et al. [17], which comprises just a few
convolution layers and is part of a fire alarm system. The
second model is presented by Sharma et al. [13], where a pre-
trained ResNet50 makes the feature extraction for a multilayer
perceptron classifier with 4096 hidden units. Finally, the
OctFiResNet model [18] is a reduced version of ResNet50
presenting fewer layers and replacing almost all the vanilla
convolution by octave convolution.

The first comparison has been performed over the FireNet
dataset with 2425 images, 1124 with fire label, and 1301
with the no-fire label. The FireNet dataset also contains a
test subset with 871 images corresponding to 593 with the
fire label and 278 with the no-fire label. The first results
show a validation accuracy of 93.83%, 96.02%, 95.34%, and
98.22% for FireNet, KutralNet, OctFiResNet, and ResNet50
respectively for the FireNet dataset. Correspondingly, the test
accuracy results are 88.98%, 83.70%, 88.18%, and 89.44%
for FireNet, KutralNet, OctFiResNet, and ResNet50. In order
to check the generalization of the models, for the training
and validation, the FiSmo dataset was used. The test results
obtained against the FireNet-Test dataset, as expected, get a
lower accuracy for training with the FiSmo dataset.

The following experiment evaluated the prediction of the
model with a black image as input. All the models trained
with the FireNet dataset miss-classify the black image, and the
same behavior occurs with those models trained with FiSmo,
also miss-classifying the black image with some exceptions.
The FiSmo dataset was augmented, to deal with this miss-
classification issue, adding a 10% of the no-fire label images,
of black images. The augmentation for this task showed useful
improvements in training and test stage; both results can be
observed in Figure 4(a) and Figure 4(b). The most in-depth
models outperform the results of the FireNet model.

The test performance of the models trained with different
datasets are in Figure 5. As can be seen, comparing Figure
5(b) to 5(c), the black images added into the FiSmo dataset
show a reaction in the behaviour of the ROC curve of the
models. For the KutralNet and ResNet50 models present an
improvement, for FireNet a diminishment, and OctFiResNet
remains almost the same. Regarding to the AUROC index,
FireNet achieves better value in all the datasets, but as pre-
sented in Figure 4(b) for FiSmo and FiSmoA achieves a low
test accuracy. To visualize the comparison of the models in a
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(a) The validation accuracy obtained from each dataset by
the different models. The ResNet50 version works better with
the augmented version of FiSmo and for the FireNet dataset,
followed by KutralNet. Additionally, Kutralnet performs better
with FiSmo.
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(b) Test accuracy of each model trained with a different dataset
and tested with FireNet-Test. The KutralNet model is 5.7%
lower than ResNet50 with FireNet, and it gets the best accuracy
trained over the FiSmo dataset. The ResNet50 version gets
better performance with the FiSmoA, followed by KutralNet.

Fig. 4. Training results of datasets FireNet, FiSmo, including FiSmoA, the augmented version of FiSmo (with 485 additional black images). The datasets
were split as 70/30 for FireNet and 80/20 for both variants of FiSmo. The augmentation with black images allows a better generalization in all the models,

but just a slight difference for KutralNet.
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(a) ROC curve for the models trained over
the FireNet dataset. The FireNet model per-
forms slightly better than the modified version
of ResNet50, OctFiResNet, and KutralNet.

(b) ROC curve for the models trained over the
FiSmo dataset. FireNet performs the best AU-
ROC value but with low test accuracy. The Ku-
tralNet model is the second-best AUROC value
achieving the best test accuracy, followed by
OctFiResNet and ResNet50.

(¢) ROC curve for the models trained over the
FiSmoA dataset. The performance improves in
all the models with this augmented version of
FiSmo. Again, FireNet presents the best AUROC
value but with low test accuracy. The ResNet50
performs the second-best AUROC value achiev-
ing the best test accuracy, followed by KutralNet
and OctFiResNet.

Fig. 5. The test results of the models with the FireNet-Test dataset with 871 images for fire classification. All the models were trained with a different dataset
and tested. The augmented dataset, FiSmoA, presents better results than FiSmo for all the models.

more straightforward way, Table IV shows the average value
of test accuracy and, AUROC index for all the datasets of
each model. Our proposed approach presents good accuracy
for validation and testing using different datasets. Overall,
KutralNet presents the same behavior as a deep learning
model, achieving high performance with a reduced number
of parameters and operations.

Our baseline proposed as KutralNet accomplishes an inter-
esting performance compared with previous deep models for
fire recognition. This model presents a few convolution layers
in order to acquire a feature representation of fire in images.
A model with a few numbers of layers consequently present
a reduced number of parameters and operations required for
this task. Our resultant baseline reduces 85% the parameters
number and 92% the number of operations required, in com-
parison to the OctFiResNet model, to process an image signal

TABLE IV
MEAN PERFORMANCE VALUES FOR TESTING ACCURACY AND AUROC
INDEX OF EACH MODEL.

Model Test Acc AUROC
FireNet 64.27% 0.96
KutralNet 78.26 % 0.92
OctFiResNet 75.92% 0.87
ResNet50 70.26% 0.90

of 84x84 pixels in RGB channels.

B. Portable version

With our KutralNet baseline architecture, the next experi-
mentation was to reduce its computational cost. For this pur-
pose, from the baseline, some convolution layers are modified,
resulting in three different models to check the most efficient
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of outperforming the baseline results.

Fig. 6. Training results obtained with the used datasets: FiSmo, FiSmoB, and FiSmoBA, a variant with 98 replaced no-fire images with black images. The
datasets were a validation split of 80/20 for all the models. The black image augmentation reduces the difference distance between models’ accuracy.
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(a) ROC curve for the models trained over the
FiSmo dataset. The KutralNet Octave performs
the best, followed by KutralNet. KutralNet Mo-
bile Octave and the KutralNet mobile models get
under the KutralNet’s performance.
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(b) ROC curve for the models trained over
FiSmo balanced dataset. The KutralNet Mobile
Octave outperforms the KutralNet results, fol-
lowed by the Mobile version.

0.4
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(c) ROC curve for the models trained over the
augment balanced FiSmo dataset. Just the Octave
and Mobile Octave version of KutralNet outper-
forms the baseline.

Fig. 7. The test results for the portable models with the FireNet-Test dataset with 871 images for fire classification. The models’ results are from the training
with different datasets. The FiSmo, FiSmoB, and the FiSmoBA with 98 no-fire images replaced with black images.

way of convolution. The first model, KutralNet Mobile, re-
places the structure of the baseline superficially in order to
get the inverted residual blocks with depth-wise convolution,
as proposed in [5], simplifying the operations required for
the processing. The second model, KutralNet Octave, replaces
the vanilla convolution from the baseline with the octave
convolution [8] for signal processing. In order for the octave
convolution works, the shortcut of the baseline’s architecture
is slightly modified. For the third model, KutralNet Mobile
Octave is the version that presents a combination of the
previously mentioned convolutions. This version implements
the inverted residual block with the octave convolution.

In the first place, the training was performed over FiSmo,
an unbalanced dataset with 2004 and 4059 images for the
fire and no-fire label, respectively. For this comparison of
portable approaches, a validation accuracy of 88.62%, 85.99%,
87.55%, and 87.39% is achieved by KutralNet, KutralNet Mo-
bile, KutralNet Octave, and KutralNet Mobile Octave model
respectively. Additionally, the test accuracy obtained from the
models trained with this dataset is 74.63%, 67.28%, 72.33%

TABLE V
MEAN PERFORMANCE VALUES FOR TESTING ACCURACY AND AUROC
INDEX OF EACH PORTABLE MODEL.

Model Test Acc AUROC
KutralNet 76.01% 0.86
KutralNet Mobile 71.99% 0.85
KutralNet Octave 73.90% 0.85
KutralNet Mobile Octave 79.49 % 0.90

and, 72.91%, respectively. The bar plot in Figure 6 shows the
results obtained with the other datasets. For the trained models,
the black image test was carried out in order to check the
quality of features obtained from the signal. For this purpose,
using the FiSmoBA dataset gets the lowest miss-classification
error in all the trained models. Additionally, it gets +1%
of validation accuracy difference compared with the FiSmoB
dataset. For the black image test, the KutralNet Mobile with
octave convolution gets the lowest miss-classification with
10%, 30%, and 0% for the FiSmo, FiSmoB, and FiSmoBA re-



spectively. In overall, as can be seen in Figure 7, the KutralNet
Mobile Octave performs well in the different variations of the
FiSmo dataset. Additionally, the AUROC index is even better
than the baseline with the balanced version of the dataset, and
the augmented balanced version. For the case of the KutralNet
Octave, it performs better to the Mobile Octave version with
the FiSmo and its augmented balanced version. In Table V
are the mean values obtained for test accuracy and AUROC
index for all the datasets of each portable model. Taking into
consideration the trade-off between parameter numbers and
operations required for processing the image, the Kutralnet
Octave presents a suitable solution with a less number of
parameters than the KutralNet Mobile Octave and, conversely,
requires more operations for processing.

VI. CONCLUSIONS

In this work, we have proposed a lightweight approach
for fire recognition, which consists of 138.9K parameters and
76.9M flops used as a baseline to build three portable versions.
The KutralNet Mobile, KutralNet Octave, and KutralNet Mo-
bile Octave compare the efficiency of the inverted residual
block, the depth-wise convolution, and octave convolution
techniques for portable models.

Our proposed model KutralNet obtains better accuracy and
AUROC index than previously deep learning models for fire
recognition, with just a few layers and with a considerable re-
duction in computational cost. The portable version KutralNet
Mobile Octave can achieve good performance even if trained
with different datasets for the fire and no-fire classification
task, requiring only of 24.6M flops with 185.3K param-
eters. The computational cost reduction has been possible
using the inverted residual block with depth-wise and octave
convolution combined for signal processing, proving to be
the best approach for feature extraction for portable models.
Additionally, the augmentation with black images improves
the generalization in the fire recognition task for deep models,
for both balanced and unbalanced datasets.

As future work, we consider applying portable deep learning
models for fire recognition and detection on video signal
sources. Furthermore, we plan to extend our work to fire
detection using a bounding box approach as well.
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