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ABSTRACT
Research in intelligent systems field has led to different learning
methods for machines to acquire knowledge, among them, rein-
forcement learning (RL). Given the problem of the time required to
learn how to develop a problem, using RL this work tackles the in-
teractive reinforcement learning (IRL) approach as a way of solution
for the training of agents. Furthermore, this work also addresses
the problem of continuous representations along with the inter-
active approach. In this regards, we have performed experiments
with simulated environments using different representations in the
state vector in order to show the efficiency of this approach un-
der a certain probability of interaction. The obtained results in the
simulated environments show a faster learning convergence when
using continuous states and interactive feedback in comparison to
discrete and autonomous reinforcement learning respectively.
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1 INTRODUCTION
Nowadays, the technology is giving us the ability to perform repet-
itive tasks of great effort by robotics mechanisms programmed
to execute a specific activity, for example, in a linear production
factory there are a variety of robotic structures, located one after
the other, that complement their functions in order to produce a
specific product. However, there are more complex activities that
online production systems are not able to perform under a classical
methodology of algorithm development [5], and it is necessary
to implement artificial intelligence techniques, which provide the
necessary knowledge to the system for the execution of tasks [6].

Reinforcement learning (RL) algorithms are a computational
approach to learning from interaction, which is focused on learning
through goal-oriented interaction [8]. These algorithms provide
the ability for robots (or automated systems) to perform tasks of
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greater complexity and they should, as the humans, learn to execute
them in order to achieve the goal. However, these algorithms have
a performance problem, because excessive time is used in order to
achieve an acceptable learning and, therefore, the implementation
is also expensive [5].

In this work, we present an algorithm as an extension of RL
which allows the interaction with another agent using a continuous
vector state called interactive reinforcement learning (IRL). We
have implemented a simulated scenario in order to better test the
proposed algorithms. Although the IRL approach speeds up the
learning process for classic RL, there is additional motivation to
explore other features in order to improve the convergence using
IRL with a continuous state representation.

2 REINFORCEMENT LEARNING AND
INTERACTIVE FEEDBACK

Reinforcement learning (RL) [8] refers in the one hand to animal
psychology, defining learning as the result of trial and error, and on
the other hand, solves the problem of optimal control through value
functions and dynamic programming. However, it also involves
methods of temporal differentiation, which are the beginning of
the modern field of RL.

An RL method is an effective way to solve Markov Decision
Processes (MDP) problems, which have a close relationship with
the problems of optimal control, where the dynamic programming
allows to approach the learning by means of the successive iteration
of approximations to the correct answer. The RL definition is based
on the principle of Effect Law [10], which establishes: from many
responses made in front of the same situation, those which entail a
satisfaction for the animal, will allow a strengthening between the
action and the situation, and increases the probability that it repeats
that action for that situation. On the contrary, if its response entails
discomfort, this link between action and situation is weakened,
decreasing the probability that it will happen again.

Based on the animal learning context, the term reinforcement
appears after Thorndike’s Principle of Effect Law, which establishes
the strengthening of behavior patterns as the result of an animal
receiving a stimulus in a temporal relationship with another stim-
ulus or response, where some psychologists enlarge the concept
with the weakening of these patterns, which generate a change in
the animal behavior [8].

The idea of trial and error, under a computational approach,
appeared for the first time in a 1948 report, in which Alan Tur-
ing describes a pleasure-pain system design that works under the
principle of the Effect Law: “When a configuration is reached for
which the action is undetermined, a random choice for the missing
data is made and the appropriate entry is made in the description,
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Figure 1: Interactive reinforcement learning with policy
shaping diagram.

tentatively, and is applied. When a pain stimulus occurs, all tenta-
tive entries are canceled, and when a stimulus occurs, they are all
permanent.” [11].

2.1 Markov decision processes
In Markov Decision Processes (MDP), the state vector obtained
from the environment must provide all the necessary information
[8], such as sensor measurements, but it may contain much more
than this. This status representation can be a complex structure
composed of a sequence of sensations. This is called Markov Prop-
erty.

An agent-environment interface can be implemented with this
representation of the state, where the actor or agent interacts with
its environment [8] to perform a task. This interaction is made
through a transition function that, for a certain action executed by
the agent, modifies the observable environment and gives a reward
signal. Therefore in order to solve an MDP through RL, it must
define a space of state, actions, a transition function, and a reward
function.

2.2 Interactive feedback
This learning method is an extension of reinforcement learning,
which includes an external trainer that offers instructions in order
to optimize decision-making [4], these instructions will act as a
guide for the learner through the feedback strategy [9], which can
be through the configuration in the policy or the modification in
the reward signal.

The policy shaping approach, used in this work, can be seen in
Figure 1. In this approach, the action proposed by the apprentice
can be replaced by a better action, chosen by the external trainer,
before the execution [3]. This action replacement may occur given
a certain feedback probability L which determines the frequency
of advice delivered by the trainer.

2.3 Continuous reinforcement learning
In conventional RL, most of the time, are only considered MDP with
discrete states and actions space [12], however, in many real-world
applications the discretization of this action space is not very useful
since generalization becomes more difficult from past experiences
and learning becomes slow. A way to learn from a continuous do-
main is Q-learning[14], which allows the agent learning to act in an

Figure 2: Pole balancing problem [2]

optimal manner by experiencing actions and consequences. It is an
incremental method of dynamic programming which consecutive
updates improve the chosen actions in specific states. Moreover,
another approach is an algorithm capable of managing a continuous
space of states and action is the Continuous Actor-Critic Automa-
ton (CACLA) that has the ability to find continuous real solutions,
a better generalization of properties and a quick selection of action
as shown in [15].

3 EXPERIMENTAL SETUP
The scenario is based on the Pole Balancing Problem (see Figure 2),
which requires a closed-loop feedback controller, whose behavior
must balance a pole connected to amotor-driven car. Themovement
of the car is restricted to a movement of a horizontal axis by means
of a track, and the post is free to move on this axis through a pivot
[2].

3.1 Pole balancing MDP
For the implementation of the RL algorithm, the next elements
accordingly to the MDP are defined :
• States: The state vector has a continuous representation
conformed by < x, x ′, θ, θ ′ > corresponding, respectively, to
the position of the car with respect to the center of the track,
the speed of the car, the angle of inclination of the post with
the car, and the angular velocity of the post.
• Actions: The actions have a discrete representation corre-
sponding to the direction in which the car should move on
the track, the left that executes the force in that direction
and right that executes a force in the opposite one.
• Transition Function: To obtain a variation of the state vec-
tor, a force of constant magnitude obtained from an equation
that has the four variables of the state vectors as inputs to the
system must be applied to the car; this variation is obtained
by using differential equations typical of the physical model
of the environment as shown in [2].
• Reward Function: As long as the agent holds the pole in
a vertical position, a reward equal to 1 is awarded, and if
it drops, or goes beyond the boundaries of the track, the
reward is equal to 0.
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4 DESIGN AND IMPLEMENTATION OF THE
AGENTS

For the aforementioned environment, the implementation of the
agents is done in simulated setup, which should be able to obtain
a high reward while the episodes progress. In the case of the Pole
Balancing Problem, two agents are implemented, one of them is
able to interact through a discrete state vector, and the other one
using a continuous states vector.

It is necessary for the agent to design the way in which it de-
cides to take actions in his environment where an optimal balance
between exploitation and exploration of the space of actions is
required, therefore the information available for this decision de-
pends on the actions taken previously. Thus the agent must explore
the space of action compensating the good actions already explored
with others that it has never tried before [6]. For the solution of this
compensation between exploitation and exploration, there has been
implemented the ϵ-greedy method which has an exploration rate
ϵ , randomly chosen in a normal distribution [5], and this strategy
generally results in a greater reward without getting caught in a
local minimum [8].

For the first approach to this algorithm, the off-policy Q-learning
method [13] has been implemented, since this method of learning
allows the agent the ability to act optimally, through the experience
of the consequence of the actions without the need to build a map
in the Markovian domain.

4.1 Interactive Approach
A first IRL approach is made through the implementation of an
external agent, the trainer, which gives feedback with an action,
according to its policy configuration, to a second agent given a
probability of feedback L. Therefore, the algorithm extends the RL
agent, modifying the way in which the action is selected involving
the trainer’s policy as shown in Algorithm 1. This implementation
is done for the agents of both environments in their respective
representations.

Algorithm 1 IRL Agent

function selectAction(st )
if randomValue < L then

at ← from trainer’s Q function for st
else

at ← from agent’s policy for st
return at

4.2 Discrete Representation
A first approach to the implementation of the algorithm for the pole
balancing tackles its discrete representation, in order to simplify
the complexity in finding an optimal learning policy. Since the state
vector of the system has continuous values, it must be discretized
in ranges with upper and lower limits. The BOXES approach [7]
divides the state space of the system into discrete regions called
partitions or boxes to reduce the problem complexity afterward,
the method updates the action for each partition (box).

In the implementation of Q-learning [13] for this type of repre-
sentation, a Q matrix is generated that stores the reward obtained

for each pair of action-state, allowing the simplification in the esti-
mation of the value function, validating of "how good" is the action
taken given a certain state, the definition "good" is based on terms
of reward or return expected for a given policy [8] this can be
observed in Algorithm 2.

Algorithm 2 Discrete Agent
1: Initialize Q matrix with uniform weights[-1, 1]
2: for Episode = 1,M do
3: Observe s0 from enviroment
4: Discretize s0 with BOXES
5: while st not terminal do
6: Select action at using ϵ-greedy policy
7: Observe rt , st+1
8: Discretize st+1 with BOXES
9: Update Q matriz with tuple st ,at
10: st ← st+1
11: Reduce exploration rate (ϵ) and learning rate (α )

4.3 Continuous representation
Since the continuous representation belongs to awhole range of real
numbers, the memory cost in order to generate a Q matrix for all
possible states is unfeasible, therefore, for the solution in continuous
spaces is used an approximator function [12]. This function allows
estimating the Q-value from the state vector without the need to
store it as a value within the matrix but as a Q-function.

To implement the algorithm in this representation, two multi-
layer perceptron is used; one is used for the training of the agent
and the second to compute the expected value for the Q-function.
In addition, a Temporal-Difference learning optimization is imple-
mented where a tuple is stored in a memory of < statet , actiont ,
rewardt , statet+1 > that is used to obtain the setting for the training
of the neural networks [8].

Each neural network has a 4x24x24x2 architecture, which has
4 inputs corresponding to the state vector, 2 hidden layers with
24 neurons each, and 2 outputs representing the actions that the
agent can select. The initial weights are defined randomly from
a normal distribution and the training control corresponds to the
mean square error, with a linear output function. This method is
known as deep Q-network [14] implemented in Algorithm 3.

5 TRAINING ANALYSIS AND COMPARISON
In order to obtain a correct comparison and results, a total of 50
agents were trained, with their respective configurations for the
convergence of learning as follows.

For the simulated environment, the CartPole-v1 was used from
the OpenAI Gym library [1], which defines the maximum duration
for each episode in 500 units of time, is the maximum value that can
be obtained as a reward; a minimum reward value of 475 indicates
that the task was successfully executed for the episode during the
agent training. When the successful execution is completed in 50
consecutive episodes, it is considered that the task was learned.
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Algorithm 3 Continuous Agent
1: Initialize memory D with large N
2: Initialize Q function with uniform weights[-1, 1]
3: Initialize Q approximator with uniform weights[-1, 1]
4: for episode = 1,M do
5: Observe s0 from the enviroment
6: while st not terminal do
7: Select action at using ϵ-greedy policy
8: Observe rt , st+1
9: Store the tuple (st ,at , rt , st+1, terminal) in D
10: Update Q function from D
11: st ← st+1
12: Copy weights from Q function to Q approximator
13: Reduce value of exploration rate (ϵ).

Table 1: Discrete representation agent’s parameters.

Parameter Value
Discount Factor (γ ) 0.99
Exploration Rate (ϵ) [1, 0.01]
Learning Rate (α ) [0.5, 0.1]

Table 2: Continuous representation agent’s parameters.

Parámetro Valor
Discount Factor (γ ) 0.99
Exploration Rate (ϵ) [1, 0.005]
Learning Rate (α ) 0.001

5.1 Discrete representation results
Table 1 the parameters used during the learning. The parameters,
except for the discount factor, have a decreasing value between
episodes from an initial value to a fixed minimum value. The varia-
tion of the parameters is defined by equation (1).

MAX (parammax ,MIN (parammin,param − log10(
ep + 1
25
))) (1)

The results obtained with the previous configuration (Figure
3) show where the convergence of learning from episode 150 on,
allowing the agent to improve its performance in the following
episodes, being able to get the maximum reward since episode
247, from where it can be maintained vertical for more than 50
consecutive episodes. For this representation, the agent’s interac-
tive approach shows that the convergence of learning is reached
from episode 100 onwards, however, the agent manages to execute
the task satisfactorily since episode 232, from where it is able to
maintain the post vertical for more than 50 consecutive episodes.

5.2 Continuous representation results
For the algorithm with continuous representation only the explo-
ration rate parameter decrease over time, as in equation (2), and
shown in table 2.

paramt+1 = paramt ∗ 0.999 (2)
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Figure 3: Results of training of 50 agents for the environ-
ment CartPole-v1 discretization state vector with BOXES[7],
and feedback probability of 0.3.
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Figure 4: Results of training of 50 agents for environment
CartPole-v1 with continuous representation and feedback
probability of 0.3.

As shown in Figure 4, for this representation the autonomous RL
agent converges after 55 episodes and reaches a maximum reward
of 460 in episode 215, being unable to remain stable for the following
episodes. However, under the interactive approach, there is a faster
convergence of learning which starts from episode 40 and reaches
a maximum value of reward of 450 in episode 155.

The previous results indicate that although the interactive ap-
proach does not exceed the reward values obtained during the
training, this approach allows a faster convergence of learning.
Moreover, the use of an advisor also benefits the convergence,
nevertheless, it is crucial to have good advice in order to take ad-
vantage of it, otherwise, inconsistent advice may be detrimental
for the learning process.
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6 CONCLUSIONS
In this work, we have shown that an interactive agent with a
continuous state space is able to obtain a faster convergence of
learning and perform a fewer number of episodes compared to
the autonomous agent for the same problem. In this interactive
approach, by using a continuous state space , the agent achieves a
faster learning convergence.

Although the discrete representation achieves a more stable
performance in terms of reward this may not be implemented in
all real-world scenarios.

Moreover, the interactive approach for the reinforcement learn-
ing agent allows a better convergence respect to the autonomous
approach using the same probability of policy feedback.

For future work, the implementation of an IRL agent in continu-
ous action space is considered. For instance, using the algorithm
Continuous Actor-Critic Learning Automation [12], it is expected
an improvement in terms of the time needed for the convergence
of learning.
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