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Abstract—Fire recognition from visual scenes is a demanding
task due to the high variance of color and texture. In recent
years, several fire-recognition approaches based on deep learning
methods have been proposed to overcome this problem. However,
building deep convolutional neural networks usually involves
hundreds of layers and thousands of channels, thus requiring
excessive computational cost, and a considerable amount of
data. Therefore, applying deep networks in real-world scenarios
remains an open challenge, especially when using devices with
limitations in hardware and computing power, e.g., robots or
mobile devices. To address this challenge, in this paper, we
propose a lightweight and efficient octave convolutional neural
network for fire recognition in visual scenes. Extensive experi-
ments are conducted on FireSense, CairFire, FireNet, and FiSmo
datasets. In overall, our architecture comprises fewer layers
and fewer parameters in comparison with previously proposed
architectures. Experimental results show that our model achieves
higher accuracy recognition, in comparison to state-of-the-art
methods, for all tested datasets.

Index Terms—fire recognition, lightweight model, octave con-
volution, ResNet, cross-dataset

I. INTRODUCTION

The presence of fire in some environments is capable of
causing massive losses, hence, the early recognition of this
kind of accidents is primordial. Early recognition of fire can
be translated in a quick response to manage the accident and
therefore, high accuracy of fire recognition it is also essential.
In this regard, a system capable of triggering an alarm with
high accuracy, it is crucial for the response team in charge of
monitoring this kind of accidents.

Fire accidents can be present in many environments, e.g.,
open-air, private, or community use spaces, among others. Fire
can be originated because of human intervention, piece of
machinery malfunction, unstable state of some structures, or in
many other cases as a consequence of other natural disasters.
Uncontrolled fire, or blaze, can affect in economic, social,
and environmental way principally. This damage could be
restored or not, in case it could be restored, considerable effort
and consequently, resources are required. A common type of
fire accident is the forest fire, which can cause significant
damage to the environment [1] and can increase its severity if
it spreads.

In Latin America the forest fires are present in the Amazonia
[2] and Chile [3] mainly, which have economical and envi-
ronmental consequences such as mentioned at [4]. Chile, just

in 2014, had more than 8000 fires which affected 130000ha.
After the forest fire, the soil remains damaged [5] and it is
difficult for the vegetation to grow again. When this type
of accident occurs in the environment, all plants and animal
life disappear from the affected zone as a perturbation of the
environment itself. The problem with the fires is that they are
unpredictable, in the way of when or where they will occur,
especially for forest fires. Hence, an early alert system would
help to manage these accidents or natural disasters.

Actual fire detection systems have a slow response time in
fire recognition, primarily because most of them are built on
sensors like thermal, smoke, or flame detectors. These sensors
detection systems are not sufficiently reliable because of a
high failure rate when the alarm is triggered. This kind of
sensor-based detector also needs time for the internal chemical
reaction of their material in order to trigger the signal. Thus,
where the detection has triggered an alarm, the probability of
damages it is already high.

In the last years, multiple methods have been proposed to
automate fire recognition, most of them for video surveillance
systems. The most recent methods are based on deep learning
(DL) [6] methods, especially convolutional neural networks
(CNNs). Furthermore, these deep models, such as AlexNet
[7], VGG16 [8], Inception [9], ResNet [10] have been adjusted
successfully to many tasks. Applying very deep networks to
many real-world applications, such as robots, cars, smart-
phones, and mobile devices that have hardware limitations,
reminds a challenging task.

In this paper, we propose a lightweight and efficient octave
convolutional neural network for fire recognition, which can
automatically recognize fire. Our network model is based on
ResNet architecture with a few numbers of layers and the
octave convolution, which reduces memory inference. In this
regards, it is intended to be implemented as a monitoring
system on mobile vehicles for fire detection, such as the one
presented by Madhevan et al. [11]. Experiments show that
our network with fewer layer and fewer parameters produces
promising results in lower computational time, compared with
recent state-of-the-art methods on images recognition.

II. RELATED WORK

To endow a machine with the ability to recognize the
presence of fire, it is a highly demanding task, mainly due
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to the recognition of the texture, color, and the fire’s phenome
representation by itself [12]. Initially, the task of fire recogni-
tion in computer vision was addressed using techniques based
on color space such as presented at [13] which presents a
flame detection algorithm. This algorithm employs features
as color probability with contour irregularity, among others.
Another technique based in color is presented at [14] which
was implemented in a CCTV system where the color detection
method uses the information of the RGB space to detect the
foreground at video sequences of fire-like objects. Addition-
ally, another technique uses spectral color such as presented at
[15] where it is proposed a multi-sensor surveillance system
using optical and infrared cameras for remote monitoring.
Also, a spatio-temporal technique is presented at [12] where
frame by frame is analyzed for flickering and also, with color
probability, for fire detection. Moreover, at [16] characteristics
of textures technique are applied, where a dynamic analysis of
the textures takes advantage of the knowledge of fire presence
in prior frames using linear dynamical systems.

More recently methods are based in DL [6] neural networks.
These methods are widely used to learn the features of images
where, at first layers, the simplest features are recognized and,
at top layers, the more complex ones. In [17] is proposed a
model based on SqueezeNet. The authors present a custom
layers block for signal processing, as well as model com-
pressing to achieve a light-size model. The VGG16, ResNet,
and Simple CNN models are tested in [18]. This work also
presents some variation of the VGG16 and ResNet models for
test purpose in the dataset. The Simple CNN was used to check
the profundity level required to acquire features of fire images.
In [19] is presented an algorithm capable to recognize types of
flame, based on single-shot multibox detector where the task
is separated in fire recognition and fire location. The work
presented in [20] proposes a model based in VGG16 trained
with a limited quantity of images using a generative adversarial
network and data augmentation techniques for increasing the
number of the images in the dataset. One of the most recent
works presented in [21] proposes a lightweight neural network
to be applied in the internet of things, ensuring a high frame
rate for a fire recognition in limited hardware devices such as
Raspberry Pi, as a fire and smoke detection system.

III. PROPOSED APPROACH

As mentioned in the previous section, deep learning meth-
ods for neural networks present many advantages in object
recognition. The number of elements to be recognized or
the complexity of the image, in which DL is used, defines
the number of layers. During training, the feature complexity
which is learned from the images varies at different layer levels
of the network. As fire images present characteristics which are
hard to be hand-craft extracted, in this work, a DL approach
is used for this purpose.

The proposed model is based on the ResNet architecture,
which is composed of levels of blocks with convolutional
layers, followed by a batch normalization layer and an ac-
tivation layer. Furthermore, each block connects its input

independently with the output of the block, which is known
as residual. Therefore, the next block obtains as input the
processed signal by the current block as well as the raw signal.
The first block of each level, unlike the consecutive blocks,
processes this residue by convolution and batch normalization
layers. To connect each block uses an activation layer that
processes the previous block for the next one.

To obtain a lightweight model capable of reaching high
performance on portable hardware, it needs to have as few
parameters as possible. In order to reduce the parameters
model number, a low deep level architecture is proposed in
this work. This low deep level is suited for fire recognition
as mentioned at [19], where, due to its characteristics, just a
few layers are used. For the proposed model to work with as
minimal hardware as possible, another aspect addressed it is
the application of octave convolution [22], which modifies the
usual way how convolutions are done. The octave convolution
separates the input signal into two channels, one for high
frequencies to acquire more detailed features, and another
for low frequencies to more general features. This technique
allows the model to work with less memory and a fewer
number of FLOPs in comparison to a vanilla convolution layer.

Combining the ResNet-like architecture with octave convo-
lutions leads to a lightweight model with a low computational
cost. The input for the network is a 96x96 pixels image at RGB
channel. This architecture is composed of 2 ResNet levels with
4 and 2 block, respectively. On top of the network, it has a
global average pooling followed by a fully-connected layer
with 2 units and softmax activation. The α value of the ratio
for the octave convolution is 0.25 and with 64 initial filters.
This configuration turns out a model with 956226 trainable
parameters (size on disk ~12MB). A simplified version of the
architecture can be seen in Fig. 1, additional details of the
implementation can be seen on the project repository1.

IV. EXPERIMENTAL SETUP

Due to the complexity of the fire recognition task, mainly
because some similarities with fire-like objects, a suitable
dataset is required for training the proposed model. In this
regard, a fair trade-off between images with fire presence and
images without is needed to carry out a good training process.
Moreover, it has to be considered images with objects with
fire-like color labeled as no fire. From the literature review,
four datasets have been selected to compare the performance
of the proposed model. Three of the datasets have been used in
previous works, and another one has been recently compiled.
Custom names has been given to the three previously used
datasets, FireSense2 [16], CairFire3 [18], and the most recently
released FireNet4 [21]. The fourth one, never used before,

1Github repository https://github.com/angel-ayala/fire recognition
2Online available at https://zenodo.org/record/836749 [Accessed: July,

2019]
3Online available at https://github.com/cair/Fire-Detection-Image-Dataset

[Accessed: July, 2019]
4Online available at https://github.com/arpit-jadon/FireNet-LightWeight-

Network-for-Fire-Detection, [Accessed: July, 2019]
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Fig. 1. Simplified architecture of the proposed model blocks of ResNet with octave convolution. To the left is the initial block, where the residual passes
through a convolution and batch normalization. In the middle, it is the consecutive block with no processed residual, which is repeated 3 times with 2 levels.
Finally, to the right is encountered the top layers which merge the octave convolution into one. After this, the signal is processed by a ReLU activation
consecutive with a ResNet block of 3 levels with vanilla convolution, batch normalization, and ReLU activation.

FiSmo [23], is a compiled dataset of fire and smoke images
called this way by the authors themselves, which is also
publicly available to use at the authors’ cloud folder. All
datasets contain numerous images with fire and without it.
More details of each image dataset will be discussed below.

During the learning process, all datasets were used for
training, validation, and testing. The validation was settled
with images from the same dataset partitioned and others with
the entire dataset.

A. Datasets

Choosing an image dataset is fundamental for training a
neural network. The quality and variety of these images will
define the generalization that would be capable of achieving
the neural network. In this regard, four datasets were selected
for training, validation and testing the proposed model. More
than 10000 images were used for this purpose, which is
described below.

The FireSense dataset [16], is a video compilation which
contains 27 videos for fire detection and, 22 videos for
smoke detection. From the fire detection videos are 11 videos
with fire presence and 16 videos without it. Moreover, the
smoke detection videos are 13 videos with smoke presence
and 9 videos without it. From this compilation, just the fire
detection videos were used. Therefore, frames extraction has
been performed for the training of the model. Just one frame

per second was obtained from these videos, getting a total of
329 frames with fire presence and 577 frames without it. Some
samples are shown in Fig. 2(a).

For the CairFire dataset [18], the authors generated the
dataset by selecting images from internet. They present images
with different fire scenarios, indoor and outdoor, and different
type of illumination as fire-like color. The dataset is highly
unbalanced and contains 110 images with fire presence and
541 images without it. Examples of images are shown in Fig.
2(b).

The FireNet dataset [21], it is a recent compilation of
challenging images with and without fire presence. The authors
complement the datasets used in previous works with internet
images to make them more diverse. They produce the dataset
summarizing a total of 1124 images with fire presence and
1301 images without it. Examples images are shown in Fig.
2(c). This dataset additionally includes 871 images for testing
purpose, where 593 images have fire presence and 278 do not
have.

Finally, the FiSmo dataset [23] has also been used. In this
dataset, the authors also create a compilation of images from
other datasets obtaining more than 9000 images. The source
datasets used for FiSmo are in the context of the RESCUER
Project5. One of the subsets is called Flickr-FireSmoke by

5Project FP7-ICT-2013-EU-Brazil - ”RESCUER - Reliable and Smart-
Crowdsourcing Solution for Emergency and Crisis Management”



the authors, which have in total more than 5000 images.
Another subset is the Flickr-Fire, which present balanced
quantities of images between fire and no fire from Flickr-
FireSmoke, adding 281 other images from other sources with
the presence of fire. Additionally, from the BoWFire dataset
[24], which is included in the compilation, just the testing
subset is used as part of the dataset. This selection is made
because the training subset is meant to training a pixel-value
fire recognition algorithm. Since the SmokeBlock contains
only images with smoke presence, this subset is omitted in
this work. A total of 2004 images with fire presence and 4059
images without it are used from FiSmo dataset.

Some example images are shown in Fig. 2(d). Summarizing
all the datasets, a total of 10916 images are used in this work.
From these, 4160 images have the presence of fire and 6756
do not have. In Table I is shown a detailed trade-off summary
of images with fire and no fire from the used datasets.

TABLE I
SUMMARY OF DATASETS USED FOR THIS WORK.

Dataset Fire No Fire Total
FireSense 329 577 906
CairFire 110 541 651
FireNet 1124 1301 2425
FireNet (testing) 593 278 871
FiSmo 2004 4059 6063

Total 4160 6756 10916

B. Implementation details
For the training process, all the aforementioned datasets

were used. For this purpose, all the algorithms were imple-
mented with the Python programming language, using the
framework Keras with TensorFlow as a back-end for the neural
network approach. The images were normalized to make their
values ∈ [0, 1] before being processed by the model. The
model was trained during 100 epochs with Adam optimizer
with Nesterov momentum with a learning rate of α = 0.0001.

Each one of the datasets was used for training, validation,
and testing of the proposed model to achieve the best possible
generalization. For example, using cross-dataset validation, the
entire FireSense dataset was used for training and, Cairfire,
FireNet, and FiSmo were used separately for validation. There-
fore, each dataset obtains four different training results, one
by splitting the dataset itself for training and validation, and
the other three using cross-dataset validation.

When the same dataset was used, it was split into two
different sets, one for training and another for validation. For
the FireSense and FiSmo datasets, the 80% of the images were
used for training purpose and 20% for validation. For CairFire
and FireNet datasets, the same divisions made by the authors
at [18] and [21] were used respectively. In this regard, for
the CairFire dataset, 549 images were used for training and,
102 images for validation. From the training subset, 59 images
had fire presence, and 490 did not have. The validation subset
was composed of 51 images with fire presence and 51 images
without it. To the FireNet dataset, a 70% was used for training,
while the other 30% of the images was used for validation.

As previously mentioned, for validation different datasets
are also used for testing. For example, if CairFire is used for
training, and FireSense for validation, FireNet, and FiSmo are
used for testing. The only exception is the FireNet dataset,
which already contains different images for training and test-
ing. For statistical analysis, the algorithm has been executed
ten times for each dataset.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The obtained results for the pre-processed datasets during
the training were achieved with the following configurations.
For each dataset, the training was repeated ten times. Each
training had a duration of 100 epochs for each of those run.
The validation during training was performed with images of
the same dataset and also with cross-dataset validation. The
average results are shown in Table II. Fig. 3 shows the best
models obtained from all the runs for each validation.

TABLE II
AVERAGE RESULTS FROM 10 TIMES OF TRAINING EXECUTION OBTAINED

WITH CROSS-DATASET VALIDATION. FOR THE RESULTS OBTAINED IN
FIRESENSE AND FISMO WITH THEMSELVES, A DATASET SPLIT OF

80%/20% WAS USED FOR TRAINING AND VALIDATION, RESPECTIVELY.
FOR THE CAIRFIRE, 549 IMAGES WERE USED FOR TRAINING AND, 110
IMAGES FOR VALIDATION. FOR FIRENET A 70%/30% SPLIT WAS USED.

Dataset FireSense CairFire FireNet FiSmo

FireSense 100% 82.87% 67.84% 69.71%
±0.0% ±0.89% ±2.87% ±3.21%

CairFire 83.43% 90.78% 90.65% 79.59%
±2.08% ±1.61% ±2.08% ±1.21%

FireNet 85.14% 100% 95.47% 81.90%
±2.29% ±0.0% ±0.34% ±0.69%

FiSmo 88.29% 94.09% 84.49% 87.44%
±2.58% ±0.50% ±0.81% ±0.42%

In order to check generalization, cross-dataset testing is
carried out with the best models obtained during the validation.
For the testing step, the accuracy, precision, recall, and f1-
score metrics are used. Table III show the testing metrics for
the model using the FireNet dataset for training. Different
datasets are used for validation (abbreviated as ”Val.”), and
testing. CF and FS are the abbreviations for CairFire and
FireSense, respectively.

TABLE III
NO-FIRE LABEL CLASSIFICATION TESTING METRICS FOR TRAINING WITH

FIRENET DATASET USING CROSS-DATASET VALIDATION.

Training: FireNet No Fire
Val. Testing Accuracy Precision Recall f1-score

Fi
re

N
et FireSense 75.06% 90.72% 67.76% 77.58%

CairFire 99.69% 100% 99.63% 99.81%
FireNet test 96.33% 92.41% 96.40% 94.37%
FiSmo 77.88% 93.09% 72.33% 81.41%

C
F

FireSense 83.44% 93.48% 79.55% 85.95%
FireNet test 92.19% 84.31% 92.80% 88.36%
FiSmo 78.91% 89.47% 77.63% 83.13%

FS

CairFire 100% 100% 100% 100%
FireNet test 95.87% 96.54% 90.29% 93.31%
FiSmo 80.34% 90.08% 79.38% 84.39%

Fi
Sm

o FireSense 85.87% 85.81% 93.24% 89.37%
FireNet test 86.11% 70.60% 96.76% 81.64%
CairFire 100% 100% 100% 100%



(a) Images samples of FireSense dataset (b) Images samples of CairFire dataset

(c) Images samples of FireNet dataset (d) Images samples of FiSmo dataset

Fig. 2. Images samples of each used dataset. From (a) to (d), first rows of each subfigure, show images with the label of fire, and the second rows show
images with the label no fire.
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Fig. 3. Best accuracy obtained during the training of cross-dataset validation
from 10 runs, during 100 epochs each.

A. Performance Comparisons

After training, the overall obtained results show excellent
performance for each dataset. These results represent an inter-
esting improvement, considering the previously reported out-
comes in the original works where each dataset was presented.
Following, the main differences are presented.

For FireSense dataset, an accuracy of 95.27% has been
previously reported on [16]. In their method, the authors make

sections at the image with a size of 8x8 for evaluation. Our
proposed model, using FireSense dataset, achieves a 100% of
accuracy for the 20% of validation during training.

Using the CairFire dataset, the authors present a modified
version of the ResNet50, which obtains an accuracy of 92.15%
at most [18]. For this dataset, our proposed model achieves a
maximum accuracy of 94.12%.

For the next dataset, used in FireNet [21], the authors
presented a lightweight model for an internet-of-things ap-
plication. This model shows a testing accuracy of 93.91%,
comprising more than 600,000 parameters. In comparison, our
model achieves a testing accuracy of 96.33% using 950,000
parameters approximately. Although our model comprises
more parameters, the proposed model uses less memory and
it is computationally efficient due to the octave convolutions.

Finally, for FiSmo, the authors have only presented the
dataset. To the best of our knowledge, no work has been
presented yet using this dataset, and therefore, no comparison
has been performed. Regardless, our proposed model obtains
an average accuracy of 87.44% and a maximum of 88.38%
for these images.



B. Discussion

Given the obtained results, our model is capable of achiev-
ing a high precision on datasets with a reduced number of
images. However, datasets with a greater variety of fire-like
objects in the images are more difficult to generalize. Regard-
less of these problems, the proposed model is still capable
of achieving high rates of accuracy in testing. Furthermore,
the reduced number of parameters does not affect the overall
performance negatively. From the addressed datasets, FiSmo
presents a more challenging number of images in comparison
to the others. For this dataset, during the validation process,
the proposed model obtains 87.44% of accuracy.

VI. CONCLUSIONS

In this work, we present a fire-recognition model to achieve
better performance in comparison to previously presented
works. Moreover, we introduce a cross-dataset validation as a
baseline to compare fire-recognition algorithm performances
with a great number of images and variety. In this regard, the
FiSmo dataset is an excellent approach to test the generaliza-
tion of our algorithm.

The obtained training outcomes achieved by our model
show excellent performance. High testing accuracy is obtained
with great precision for no-fire recognition. Additionally, our
model includes a reduced number of parameters as well as low
computational costs. Thus, our approach is suitable for being
implemented in mobile devices.

As future works, we propose to implement the model on
a limited-hardware device for better performance testings.
Furthermore, we plan to extend our work to fire detection
using a bounding box approach as well.
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climate, social and economic changes in europe, the mediterranean and
other fire-affected areas of the world,” FUME : lessons learned and
outlook, 1 2014.

[2] J. Barlow and C. A. Peres, “Avifaunal responses to single and
recurrent wildfires in amazonian forests,” Ecological Applications,
vol. 14, no. 5, pp. 1358–1373, 2004. [Online]. Available: https:
//esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/03-5077
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