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Abstract A long-term goal of reinforcement learning

agents is to be able to perform tasks in complex real-

world scenarios. The use of external information is one

way of scaling agents to more complex problems. How-

ever, there is a general lack of collaboration or inter-

operability between different approaches using external

information. In this work, while reviewing externally-

influenced methods, we propose a conceptual frame-

work and taxonomy for assisted reinforcement learning,

aimed at fostering collaboration by classifying and com-

paring various methods that use external information

in the learning process. The proposed taxonomy de-

tails the relationship between the external information

source and the learner agent, highlighting the process

of information decomposition, structure, retention, and
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how it can be used to influence agent learning. As well

as reviewing state-of-the-art methods, we identify cur-

rent streams of reinforcement learning that use exter-

nal information in order to improve the agent’s perfor-

mance and its decision-making process. These include

heuristic reinforcement learning, interactive reinforce-

ment learning, learning from demonstration, transfer

learning, and learning from multiple sources, among

others. These streams of reinforcement learning operate

with the shared objective of scaffolding the learner agent.

Lastly, we discuss further possibilities for future work

in the field of assisted reinforcement learning systems.

Keywords Assisted reinforcement learning ·
Externally-influenced agents · Assistance taxonomy.

1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018)

is a learning approach in which an agent uses sequential

decisions to interact with its environment trying to find

a (near-) optimal policy to perform an intended task.

RL agents have the ability to improve while operating,

to learn without supervision, and to adapt to changing

circumstances (Kaelbling et al, 1996). By exploring, a

standard agent learns solely from the signals it receives

from the environment. The RL approach has shown

success in domains such as robotics (Kitano et al, 1997;

Kober et al, 2013; Cruz et al, 2018c; Contreras et al,

2020), game-playing (Tesauro, 1994; Barros et al, 2020),

inventory management (Giannoccaro and Pontrandolfo,

2002), and cloud computing (Shakarami et al, 2020;

Shahidinejad and Ghobaei-Arani, 2020; Ghobaei-Arani

et al, 2018), among others.

Like many machine learning techniques, RL faces the

problem of high-dimensionality spaces. As environments
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become larger, the agent’s learning time increases and

finding the optimal solution becomes impractical (Cas-

sandra and Kaelbling, 2016). Early research on this

topic (Kaelbling et al, 1996; Lin, 1991) argued that

for RL to successfully scale into real-world scenarios,

then the use of information external to the environ-

ment would be needed. Different RL strategies using

this approach have emerged in order to speed up the

learning process. They use external information to as-

sist either the process of generalising the environment

representation (Price and Boutilier, 2003), the agent’s
decision-making process (Griffith et al, 2013), or in pro-

viding more focused exploration (Fernández and Veloso,

2006).

In this article, we refer to external information as any

kind of information provided to the agent originating

from outside of the agent’s representation of the environ-

ment. This may include demonstrations (Konidaris et al,

2012; Rozo et al, 2013; Chen et al, 2019), advice and

critiques (Knox and Stone, 2010; Griffith et al, 2013), ini-

tial bias based on previously gathered data (Taylor and

Stone, 2009), or highly-detailed domain-specific shaping

functions (Randløv and Alstrøm, 1998). Additionally, in

this work, we use independently the concepts of RL ap-

proach, method, and technique to refer to the underlying

learning algorithm. These concepts have been previously

used mostly equally by the RL research community.

In this regard, we define Assisted reinforcement learn-

ing (ARL) as a range of techniques that use external

information, either before, during, or after training, to

improve the performance of the learner agent, as well as

to scale RL to larger and more complex scenarios. While

a relevant characteristic of RL is its ability to endow

agents with new skills from the ground up, ARL also

makes use of existing information and/or previously

learned behaviour. Some methods for improving the

agent’s performance using external information include:

directly altering weights for actions and states (bias-

ing) (Vlassis et al, 2012); altering the state or action

space (Erez and Smart, 2008); critiquing past or advising

on future decision-making (Thomaz and Breazeal, 2007);

dynamically altering reward functions (Knox and Stone,

2010); directly modifying the policy (Griffith et al, 2013);

guiding exploration and action selection (Fernández

and Veloso, 2006); and, creating information reposito-

ries/models to supplement the environmental informa-

tion (Price and Boutilier, 2003). Figure 1 captures all

of these methods in a basic view of the ARL conceptual

framework used in this work. The classic RL approach

is shown within the figure where an agent performs an

action on the environment reaching a new state and

obtaining a reward. In ARL, the response of the envi-

ronment is also shared with the external information
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Fig. 1 Assisted reinforcement learning simplified framework.
In autonomous reinforcement learning, an agent performs an
action at from a state st and the environment produces an
answer leading the agent to a new state st+1 and receiving a
reward rt+1. Assisted reinforcement learning adds an external
information source, referred to as a trainer, teacher, advisor or
assistant, that observes the environment and the agent in order
to generate advice. The trainer may advise the learner agent
or sometimes directly modify the environment. Moreover, the
agent may also actively ask advice to the external information
source.

source from where advice is given to the agent or changes

sometimes made directly to the environment (Xu et al,

2020).

To date, many methods using external information

have been proposed aiming to speed up the learning pro-

cess for an autonomous agent (Arzate Cruz and Igarashi,

2020; Lin et al, 2020; Da Silva et al, 2020b; Zhuang et al,

2020). Usually, they have been organized according to

the technique employed, e.g., heuristic, interactive, or

transfer learning, among others. Nevertheless, there is

an important lack of understanding of how these tech-

niques are related and what characteristics they share.

Therefore, in this review, we present a conceptual frame-

work and a taxonomy to be used to describe the practice

of using external information. A standardised ARL tax-

onomy will foster collaboration between different RL

communities, improve comparability, allow a precise de-

scription of new approaches, and assist in identifying

and addressing key questions for further research.
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2 A Conceptual Framework for Assisted

Reinforcement Learning

In this section, we give more details about the ARL ap-

proach including some introductory examples of works

in which external information sources have been used.

Moreover, we define a conceptual framework identifying

the different parts that comprise the underlying pro-

cess used in ARL techniques. Based on this conceptual

framework, in the following section, we define a more

detailed taxonomy for ARL approaches.

2.1 Assisted Reinforcement Learning

The main strength of RL is its ability for endowing an
agent with new skills given no initial knowledge about

the environment. With an appropriate reward function

and enough interaction with its environment, an RL

agent can learn (near-) optimal behaviour (Sutton and
Barto, 2018). The agent’s behaviour at every step is

defined by its policy. The reward function promotes de-

sirable behaviour and sometimes penalises undesirable

behaviour. In the traditional view of RL, the reward

function, and the rewards it produces, are internal to

the environment (Kaelbling et al, 1996). Traditional RL,

in which the environment is the sole provider of infor-

mation to the agent, has been demonstrated to perform

well in many different domains, especially when facing

small and bounded problems (Sutton and Barto, 2018).

However, RL has some difficulties when scaling up to

large, unbounded environments, particularly regarding

the time needed for the agent to learn the optimal pol-

icy (Cruz et al, 2016a, 2018b). In RL, one approach

to tackling this issue is to use external information to

supplement the information that the environment pro-

vides (Suay and Chernova, 2011; Millán et al, 2019).

Information is considered external if it originates

from outside of the agent’s interactions with the environ-

ment. In this regard, internal information is determined

solely through interactions and observations with the

environment. For example, in the case of a human the

internal information would be anything the person can

observe from the environment using their senses (Niv,

2009). The external information would be any informa-

tion provided by peers, advisors, the internet, books,

maps, and tutelage. In RL, anything external to the

agent is usually considered part of the environment. In

this regard, if an agent is learning in an environment,

a person can be considered as part of it, therefore, the

agent could model that person or communicate with

them (Sert et al, 2020). Although it is possible that

external sources of information could be just treated

as part of the environment, this is handicapping the

agent in an unnecessary way. There are external sources

of information that might not necessarily be treated

as part of the environment because they are socially

advantaged. For instance, if an external source is pro-

viding action advice using directions as ‘left’ and ‘right’,

the agent does not have to learn the meaning of these

words from the ground up, or learn how to react to these

instructions. Instead, we assume the agent knows that

advice is coming, what it means, and how to use it. For

example, if a person eats some berries and later becomes

sick, the person may determine that those berries are
poisonous. In this case, this would be internal informa-

tion obtained by interaction with the environment. If

instead, a peer had previously advised the person that

eating those berries will make them sick, that would be

external information provided by an extrinsic source.

In this work, we refer to methods using externally-

influenced agent learning as as assisted reinforcement

learning. The ARL framework is defined to include any
type of RL that uses external information to supplement

agent learning and the decision-making process. Some

common practices include the direct alteration of the
agent’s understanding of the environment (Price and

Boutilier, 2003), focusing exploration efforts through cri-

tique and advice (Thomaz and Breazeal, 2007), or assist-

ing the agent in the decision-making process (Fernández

and Veloso, 2006). For instance, existing ARL techniques

include interactive reinforcement learning (Amershi et al,
2014; Cruz et al, 2017), learning from demonstration (Ar-

gall et al, 2007; Nair et al, 2018), and transfer learn-

ing (Taylor and Stone, 2009; Shao et al, 2018), among

others.

The previously mentioned RL approaches are just

examples of ARL methods that use external informa-
tion to supplement the agent’s decision-making process

and learning. Additional details of these and other ap-

proaches and how they use an external information

source to assist the agent (in terms of our ARL frame-

work) are addressed in Section 4. The external infor-

mation source is most commonly a human or another

artificial agent. Regardless of the source, the use of ex-

ternal information has often been shown to improve an

agent’s ability and learning speed. In the next section,

we present a more detailed conceptual framework for

ARL which is the base for the taxonomy we propose

subsequently.

2.2 Conceptual Framework

The proposed ARL framework is built to improve the

classification, the comparability, and the discussion on

different externally-influenced RL methods. To achieve
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Fig. 2 Detailed view of the assisted reinforcement learning framework. The diagram includes four processing components
shown as dashed red boxes. Inside the assisted agent, one can observe three different points where it can receive possible
modifications from the external model. Additionally, three communication links are shown with underlined text. This framework
is subsequently used to further discuss the proposed ARL taxonomy.

this aim, the framework has been designed using in-

sights and observations drawn from many different ARL

approaches. The result is a framework that can describe

existing methods while also being flexible enough to in-

clude future research. The framework details are shown
in Figure 2.

The proposed ARL framework comprises four pro-

cessing components shown using red boxes in the di-

agram, i.e., information source, advice interpretation,

external model, and the assisted agent itself. The exter-

nal information source may not have perfect observabil-

ity and also may not know details about the RL agent

(algorithms, weights, hyperparameters, etc.), or make

assumptions, e.g., value-based learners (Taylor et al,

2005). The processing components are responsible for

providing, transforming, and storing information. We do

include the agent as part of the processing components

since it is part of the RL process as well. However, an

agent using ARL generally behaves as a traditional RL

agent, i.e., it interacts with the environment by explor-

ing/exploiting actions. Inside the agent, there are three
different stages: reward update, internal processing, and

action selection. Each of those stages may be altered

by the external model using reward/state modifications,

internal modifications, or action modifications respec-

tively. Moreover, the ARL framework also comprises

three communication links that connect the four pro-

cessing components and are labelled: temporality, advice

structure, and agent modification. These links are shown

between the processing components and represent the

communication lines in Figure 2 that connect the pro-

cessing components together. The communication links
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convey information or denote constraints on the data

such as where or when to provide information.

The ARL framework describes the transmission,

modification, and modality of sourced information. In

this regard, we consider the ARL framework as a whole

unit, comprising traditional autonomous RL plus the

components and links for assistance. Thus, the taxon-

omy is a part of the framework and oriented to describe

the assisted learning section. Although the framework

has been developed on how ARL is usually built, not all

ARL approaches use all the proposed components and
links. Below, we briefly describe each of the components

and links of the framework. They are subsequently used

in the next section to describe in detail the proposed

taxonomy.

– Information source: is the origin of the assistance

being provided to the agent. The source may be a

human, a repository, or another agent. There may

be multiple information sources providing assistance
to an agent.

– Temporality: determines both the time at which

information is provided to the agent, and the fre-

quency with which it is provided. Information may

be provided, before, during, or after agent training,

and occur multiple times through the learning pro-

cess. Therefore, it is also responsible for how the

information source communicates temporal issues to

the advice interpreter.

– Advice interpretation: denotes the process of trans-

forming incoming information into a format better

suited for the agent. This may involve extracting

key frames from video, converting audio samples to

rewards, or mapping information to states.

– Advice structure: represents the structure of the

advice after translation in a form suitable for the

external model. Some approaches may not have an ex-

plicit external model, therefore, this structure might

instead be directly used to modify the agent.

– External model: is responsible for retaining and

relaying the information between the source and the

agent. The model may retain the received informa-

tion in the learning model, using it for later decisions,

or it may discard the received information as soon

as it has been used.

– Agent modification: denotes the approach that

the agent uses to benefit from the incoming infor-

mation. The most common modification approaches

may use information to alter the environmental re-

ward signal or modify the agent’s behaviour or the

decision-making process directly.

– Assisted Agent: is the RL agent receiving the ex-

ternal information or advice while learning a new

task. The agent needs to work out how to incorporate

Information
Source

Advice
Interpretation

External
Model

Assisted
Agent

Temporality
Advice structure

Agent modification

Fig. 3 Relation between the processing components and the
communication links as a UML sequence diagram.

the provided information with its own learning. If a

different action is suggested by the trainer then the

agent may decide if it should follow to that advice

or not.

Figure 3 shows in a UML sequence diagram the in-

teraction between the processing components and com-

munication links according to Figure 2.

3 Assisted Reinforcement Learning Taxonomy

In this section, we describe the processing components
and communication links included in the proposed frame-

work within an ARL taxonomy1 and give more details

of each of them. Figure 4 shows all the elements of the

proposed ARL taxonomy including examples for each

processing component and communication link. In the

taxonomy, we include the agent as a component being
the one that receives the advice. Each of the seven ele-

ments, i.e., processing components and communication

links, is described in detail in the following subsections.

In our work, the concept of taxonomy is used to classify

the different elements within a class of problems, i.e.,

ARL problems. In this regard, our proposal is repre-

sented by a general ontology where the class is ARL,

the properties are the processing components and the

communication links, and the relations between the

properties are as shown in Figure 4.

3.1 Information Source

The external information source is the main factor that

sets ARL apart from traditional RL approaches. It is

responsible for introducing new information about the

task to the agent, supplementing or replacing the infor-

mation the agent receives from the environment. The

1 In this context, we refer the taxonomy as a classification of
the different elements of the ARL framework, i.e., processing
components and communication links, and not as a way to
classify each ARL method.
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Fig. 4 The assisted reinforcement learning taxonomy. This
figure shows the four processing components as dashed red
boxes and the communication links as green parallelograms
using underlined text. Examples for each component and
method are included at the right.

source is external to the agent and the environment,

providing information that either the agent may not

have had access to, or would have eventually learned

itself. The information source may be able to observe the

environment, the agent, or the agent’s decision-making

process. The objective of the information source is to

assist the agent in achieving its goal faster.

There may be multiple information sources communi-

cating with an agent. This may be humans, agents, other

digital sources, or any combination of the three (Isbell

et al, 2000). The use of multiple sources offers a wider

range of available information to the agent. However,

more complex modification methods may be required

to manage the information and handle conflicting ad-

vice (Kamar et al, 2012).

There are many examples of external information

sources in current ARL literature, the most common of

which are humans and additional reward functions (Ng

et al, 1999; Thomaz et al, 2006a; Millán et al, 2019).

For instance, RLfD and IntRL use human guidance

to provide the agent with a generalised view of the

solution (Cobo et al, 2014; Subramanian et al, 2016).

Moreover, the use of additional reward functions is one

of the earliest examples of ARL. In such cases, the de-

signer of the agent encodes some further information

about the environment or goal as an additional reward,

supplementing the original reward given by the environ-

ment.

An example of the use of additional reward functions

can be found in Randløv and Alstrøm’s bicycle experi-

ment (Randløv and Alstrøm, 1998), in which, they teach

an agent to ride a bicycle towards a goal point. Without

additional assistance, the RL agent would only receive

a reward upon reaching the termination state. Randløv

and Alstrøm encoded some of their knowledge as a shap-

ing reward signal external to the environment, providing

the agent with additional rewards if it is cycling towards

the goal point. In this scenario, the system designers

acted as an external information source, providing extra

information to the RL agent. The use of this external

information results in the agent learning the solution

faster than using the traditional RL approach.

Some other information sources include behaviours

from past experiences or other agents, repositories of

labelled data or examples, or distribution tables for

initialising/biasing agent behaviour (Cruz et al, 2017).

Video, audio, and text sources may be used as well (Cruz
et al, 2016b). However, these sources may require sub-

stantial amounts of interpretation and preprocessing to

be of use.

The accuracy, availability, or consistency of the in-

formation source can affect the maximum utility of the

information (Torrey and Taylor, 2013; Taylor et al, 2014).

Identifying in advance inaccurate information given to

the agent can significantly improve performance (Cruz

et al, 2016a, 2018a). While the information source may

perform the validation and the verification of the given

advice, the primary duty remains simply to act as a

supplementary source of information. In this regard,

both validation and verification of information are func-

tions better suited for the external model or the assisted

agent.

3.2 Temporality

The temporal component, or temporality, refers to the

time at which information is communicated by the in-

formation source. The information may be provided

in full to the agent at a set time (either before, dur-

ing, or after training). This is referred to as planned

assistance (Partalas et al, 2008; Cheng et al, 2013). Al-

ternatively, the information may be provided at any
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time during the agent’s operation, referred to as inter-

active assistance (Pilarski and Sutton, 2012; Stahlhut

et al, 2015).

Planned assistance, on the one hand, is common in

ARL methods. Some examples are predefined additional

shaping functions, agent policy initialisation based on

either prior experience or a known distribution, and

the creation of subgoals that lead the way to a final

solution (Partalas et al, 2008). These methods let the

experiment designer endow the agent with initial infor-

mation about the environment or the goal to be achieved.

By providing this initial knowledge, the designer can

reduce the agent’s need for exploration.

The bicycle experiment discussed in the previous

section is an example of planned assistance. As men-

tioned, the agent is learning to control a bicycle and

must learn to steer it towards a goal (Randløv and Al-

strøm, 1998). Before the experiment, the designers give

the agent additional information in the form of a reward

signal that correlates to the direction of the goal state.

This planned assistance approach helps the agent to

narrow the search space by giving it extra information

about the environment. This small yet beneficial initial

information results in a significant improvement in the

agent’s learning speed.

Another example of planned assistance is found in

heuristic RL. Heuristic RL is a method of applying ad-

vice to agent decision-making. One example is an exper-

iment which implements heuristic RL in the RoboCup
soccer domain (Celiberto Jr et al, 2007), a domain known

for its large state space and continuous state range. In

this environment, one team attempts to score a goal,

while the other team tries to block the first team from

scoring, such as in half-field offence (Kalyanakrishnan

et al, 2006; Hausknecht et al, 2016). In this experiment

using heuristic RL, the defending team is given initial

advice before training. This advice consists of two rules:

if the agent is not near the ball then move closer, and

if the agent is near the ball then do something with

it. The experiment results show that a team that uses

planned assistance performs better than a team that is

given no initial knowledge (Celiberto Jr et al, 2007).

Interactive assistance, on the other hand, refers to

information provided by the source repeatedly through-

out the agent’s learning. Information sources that assist

interactively often can observe the agent’s current state,

or the environment the agent is operating in. In current

literature, humans are more commonly used as infor-

mation sources for interactive assistance (Thomaz et al,

2006b; Subramanian et al, 2011). The human can ob-

serve how the agent is performing and its current state

in the environment, and provides guidance or critiques

of the agent’s behaviour (Bignold et al, 2020).

For example, Sophie’s Kitchen (Thomaz and Breazeal,

2007) presents an IntRL based agent, called Sophie,

which attempts to bake a cake by interacting with the

items and ingredients found in a kitchen. In this experi-

ment, the agent will receive a reward if it successfully

bakes the cake. At any point during the agent’s training,

an observing human can provide the agent with an addi-

tional reward to supplement the reward signal given by

the environment. If the agent performs an undesirable

action, such as forgetting to add eggs to the cake, the

human can punish the agent by providing an immediate
negative reward. The human can also reward the agent

for performing desirable actions, such as adding ingredi-

ents in the correct order. In this experiment, the human

advisor is acting as an interactive information source.

Although the agent could learn the task without

any assistance, the addition of the human advisor and

interactive feedback allows the agent to learn the de-

sired behaviour faster in comparison to autonomous

RL (Thomaz and Breazeal, 2007). The benefit of using

interactive advice rather than planned advice is that the

information source can react to the current state of the

agent. Additionally, an interactive information source

does not need to encode all possibly useful advice up

front. Instead, it can choose to provide relevant infor-

mation only when required. This approach does have

a significant cost; the information source needs to be

constantly observing the agent and determining what

information is relevant. For instance, an approach using

inverse RL through demonstrations may also consider

providing failed examples to show the agent what not

to do (Shiarlis et al, 2016).

3.3 Advice Interpretation

The advice interpretation stage of the taxonomy denotes

what transformations need to occur on the incoming in-

formation. The source provides information for the agent

to use that may need to be translated into a format that

the agent can understand. The information source may

provide their assistance in many different forms. Some

examples include audio (Cruz et al, 2015), video (Cruz

et al, 2016b), text (Liu et al, 2019), distributions and

probabilities (Millán et al, 2019), or prior learned be-

haviour from a different task or agent (Da Silva et al,

2020b). This information needs to be adapted for use

by the agent for the current task. The product of the

advice interpretation stage depends on the structure

that the agent or external model requires.

A field where the interpretation of incoming advice

is crucial is Transfer Learning (TL). The goal of TL

is to use behaviour learned in a prior task to improve

performance in a new, previously unseen task (Da Silva
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and Costa, 2019). A critical step in TL is the mapping

of states and observations between the old and new do-

mains. The information source provides information to

the agent that does not fully align with its current task.

Therefore, it is crucial that the information provided can

be correctly interpreted, so as to be useful to the current

domain. More commonly, this interpretation stage in

TL is performed by hand. However, there has also been

effort attempting to automate this stage (Taylor et al,

2008; Narvekar et al, 2016).

Another example of the use of the advice interpre-

tation stage is with the sourcing of feedback for RL

agents. In the Sophie’s Kitchen experiment (Thomaz

and Breazeal, 2007), discussed in the previous section,

the agent can be given positive or negative feedback by

a human regarding its choice of actions. In this experi-

ment, the human creates either a green (positive) or a

red (negative) bar to represent the desired feedback to

be given to the agent. This bar is used to interpret the
reward signal to give to the agent, with the colour of

the bar designating whether the reward is positive or

negative, and the size of the bar designating the mag-
nitude of the reward. This type of feedback can also

be extended to audio, where recording phrases such as

‘Good’ or ‘Well Done’ are interpreted as positive rewards

and ‘Bad’ or ‘Try Again’ are interpreted as negative

rewards (Tenorio-Gonzalez et al, 2010).

These methods can also be combined into a multi-

model architecture to provide advice to an RL robotic

agent using audiovisual sensory inputs, such as work

by Cruz et al. (Cruz et al, 2016b). In this experiment,

a simulated robot learns how to clean a table using a

multi-modal associative function to integrate auditory

and visual cues into a single piece of advice which is
used by the RL algorithm. In this scenario, the external

information source is a human trainer and the RL algo-

rithm represents the integrated advice as a state-action

pair.

3.4 Advice Structure

The advice structure component refers to the form that

the agent or external model requires incoming informa-

tion to take. The information that the agent uses can

be represented in a number of ways. Some examples

of advice structures include: Boolean values denoting

positive or negative feedback; rules determining action

selection; matrices for mapping prior experiences to new

states; case-based reasoning structures for the agent to

consult with; or, hierarchical decision trees to represent

options for the agent to take (Subramanian et al, 2011;

Kaplan et al, 2002).

The simplest form of structure is binary, in which

the information takes only one from two options, such

as ‘Good’ or ‘Bad’. An example of the use of a binary

structure is the TAMER-RL agent (Knox and Stone,

2009). TAMER-RL is an IntRL agent that uses binary

feedback from an observing human. At any time step,

the human can agree or disagree with the agent about

its last action. In this case, the feedback is a binary

structure indicating agree or disagree.

A more complex advice structure is used in case-

based RL agents (Sharma et al, 2007). A case in this

context represents a generalised area of the state space

and provides information about which actions to take in

that state. The use of a case-based structure allows the

agent to gain more information from the information
source compared to a binary structure, at a cost of more

complex sourcing and interpretation approaches.

One of the more common advice structures is a sim-

ple state-action pair. A state-action pair consists of

a single state and an associated piece of advice. The

associated advice may be an additional scalar reward

or a recommended action. Using a state-action pair,

sourced information is interpreted to provide advice for

a given state. In the cleaning-table robot task (Cruz et al,

2016b), discussed in the previous section, the external

trainer using multi-modal advice provides an action to

be performed in specific states. Once the advice is pro-
cessed using the multi-modal integration function, the

proposed action is given to the RL agent to be executed

as a state-action pair considering the agent’s current

state. This state-action structure has also been used for

other methods including TAMER-RL (Knox and Stone,

2009), Sophie’s Kitchen (Thomaz and Breazeal, 2007),
and policy-shaping approaches (Griffith et al, 2013).

A novel rule-based interactive advice structure is

introduced in (Bignold et al, 2021b). Interactive RL

methods rely on constant human supervision and eval-

uation, requiring a substantial commitment from the

advice-giver. This constraint restricts the user to pro-

viding advice relevant to the current state and no other,

even when such advice may be applicable to multiple

states. Allowing users to provide information in the form

of rules, rather than per-state action recommendations,

increases the information per interaction, and does not

limit the information to the current state. Rules can

be interactively created during the agent’s operation

and be generalised over the state space while remaining

flexible enough to handle potentially inaccurate or ir-

relevant information. The learner agent uses the rules

as persistent advice allowing the retention and reuse

of the information in the future. Rule-based advice sig-

nificantly reduces human guidance requirements while

improving agent performance.
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3.5 External Model

The external model is responsible for retaining and

relaying information between the information source

and the agent. The external model receives interpreted

information from the information source and may either

retain the information for use by the agent when required

or pass it to the agent immediately.

A retained model is an external model that stores all

information provided by the information source (Fernández

and Veloso, 2006). A retained model may be used if the

cost of acquiring information is greater than the cost

of storing it, if the information provided is general or

applies to multiple states, or if the information is gath-
ered incrementally. In instances where information is

gathered incrementally, using a retained model allows

the agent to build up a knowledge base over time. The

agent may consult with the model at any time to deter-

mine if a reward signal is to be altered, or if there is any

extra information that may assist with decision-making.

An immediate model passes the information directly

to the agent (Moreira et al, 2020). In this case, the

information received is only relevant to the current time

step, or the cost of reacquiring the information from the

source is less than that of retaining the information.

Approaches can also combine this by incorporating

both a retained model as well as passing some informa-

tion through directly, such as (Cruz et al, 2016a). In

this work, an RL agent uses a combination of interactive

feedback and contextual affordances (Cruz et al, 2016c)

to speed up the learning process of a robot performing a

domestic task. On the one hand, contextual affordances

are learned at the beginning of autonomous RL and are

readily available from there on to avoid the so-called

failed-states, which are states from where the robot is

not able to finish the task successfully anymore. On

the other hand, interactive feedback is provided by an

external advisor and used to suggest actions to perform

when the robot is learning the task. This advice is given

to the robot to be used in the current state and it is

discarded immediately after.

The external model may have different functions

depending on its implementation. For instance, heuris-

tic RL hosts a model that stores rules and advice that

generalise over sections of the state space (Dorigo and

Gambardella, 2014). In TL, the external model may

hold information regarding past experiences and policies

from problems similar to the current domain (Taylor and

Stone, 2009; Banerjee, 2007), or in inverse RL, the exter-

nal model is a substitute for the reward function (Abbeel

and Ng, 2004).

3.6 Agent Modification

The modification stage of the framework denotes how

the information that the external model contains is

used to assist the agent in achieving its goal. It is re-

sponsible for supplementing the agent’s reward, altering

the agent’s policy, or helping with the decision-making

process. A popular method for injecting external infor-
mation into agent learning is shaping (Skinner, 1975).

Shaping is a common method for altering agent perfor-

mance by modifying parameters in the learning process.

Erez and Smart (Erez and Smart, 2008) propose a list

of techniques in which shaping can be applied to RL

agents. These include altering the reward, the agent’s

policy, agent learning parameters, and environmental

dynamics (Xu et al, 2020).

Altering the reward the agent receives is a straightfor-

ward method for influencing an agent’s learning (Chu-

ramani et al, 2016). It is known as reward-shaping,

in which the external information is used to bias the

agent’s learning (Ng et al, 1999). Special care must be

taken to ensure that any modification of the reward sig-

nal remains zero-sum to avoid the agent exploiting the

shaped reward in ways that do not align with the desired
goal. This can be achieved by ensuring that additional

rewards are potential-based, meaning that they are de-

rived from the difference in the values of a potential

function at the current and successor states (Harutyun-

yan et al, 2015). However, recent work by (Behboudian

et al, 2020) shows a flaw in the previous method when

transforming non-potential-based reward-shaping into

potential-based. Alternatively, the authors introduce a

policy invariant explicit shaping algorithm allowing for

arbitrary advice, confirming that it ensures convergence

to the optimal policy when the advice is misleading

and also accelerates learning when the advice is use-

ful (Behboudian et al, 2020). Shaping techniques have

also been used to alter state-action pairs (Wiewiora

et al, 2003), for dynamic situations (Harutyunyan et al,

2015; Devlin and Kudenko, 2012), and for multi-agent

systems (Devlin and Kudenko, 2011).

Policy-shaping is the modification of the agent’s be-

haviour (Griffith et al, 2013). This modification can

be done either by influencing how the agent makes

decisions or by directly altering the agent’s learned be-

haviour. A simple method of policy-shaping involves

forcing it to take certain actions if advice from the in-

formation source has recommended them (Grizou et al,

2013; Navidi, 2020). Human-in-the-loop techniques may

be beneficial to address complex RL problems with

the help of domain experts, e.g., in health informat-

ics (Holzinger, 2016). This allows the external informa-

tion source to guide the agent and take direct control
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over exploration/exploitation. Alternatively, the infor-

mation source can choose to alter the agent’s behaviour

directly by changing Q-values or installing rules that

override the actions for chosen states (Knowles and

Wermter, 2008). This method of modification can im-

prove agent performance rapidly, as it can give the agent

partial solutions.

Internal modification is a method of altering the

parameters of the agent that are essential to its learn-

ing. Parameters such as the learning rate (α), discount

factor (γ), and exploration percentage (ε), are all in-

ternal to the RL agent and may be altered to affect

its performance (Tesauro, 2004). For example, if an ad-

visor observes that an agent is repeating actions and

not exploring enough then the exploration percentage
or learning rate may be temporarily increased. Internal

modification is a simple method to implement. However,

it can be difficult at times to know which parameters

to adjust, and to what degree they are to be adjusted.

Environmental modification is an indirect method

for influencing an RL agent. Altering the environment

is not always achievable and may be a technique better

suited for digital or simulated environments. Some ex-

amples of modifying the environment include altering

or reducing the state space and observable informa-

tion (Kerzel et al, 2018; Breyer et al, 2019), reducing

the action space (Sridharan et al, 2017), modifying the
agent’s starting state (Dixon et al, 2000), or altering the

dynamics of the environment to make the task easier

to solve (Millán-Arias et al, 2021) Below, we further

describe these environmental modifications.

Reducing the state space can speed up the agent’s

learning as there is less of the environment to search.

While the agent cannot fully solve the task with an

incomplete environment representation, it allows the

agent to learn the basic behaviour. The level of detail in

the state representation can then be increased, allowing

the agent to refine its policy towards the correct be-

haviour (Kerzel et al, 2018; Breyer et al, 2019). Reducing

the action space is similar to the previous. The agent’s

available actions are limited, and the agent attempts to

learn the best behaviour it can with the actions it has

available. Once a suitable behaviour has been achieved,

new actions can be provided, and the agent can begin

to learn more complex solutions (Sridharan et al, 2017).

Modifying the agent’s starting space alters where in

the environment the agent begins learning. Using this

approach, the agent can begin training close to the goal.

As the agent learns how to navigate to the goal, the

starting state is incrementally moved further away. This

allows the agent to build upon its past knowledge of

the environment (Dixon et al, 2000). Altering the dy-

namics of the environment involves changing how the

environment operates to make the task easier for the

agent to learn (Xu et al, 2020). By altering attributes

of the environment such as reducing gravity, lowering

maximum driving speed, or reducing noise, the agent

may learn the desired behaviour faster or more safely.

After the agent learns a satisfactory behaviour, the en-

vironment dynamics can be changed to more typical

levels (Millán-Arias et al, 2020).

3.7 Assisted Agent

The final component of the proposed ARL taxonomy

is the RL agent. A key aspect of the taxonomy is that

the agent, in the absence of any external information,
should operate the same as any RL agent would. Given

no external information, the agent should continue to

explore and interact autonomously with its environment

and attempt to achieve its goal.

In the next section, we present an in-depth look at

some ARL techniques and describe them in terms of the

taxonomy that has been presented in this section.

4 Illustrative Approaches with Components

and Links from the Taxonomy

This section presents an in-depth analysis of some pop-

ular and well-known ARL approaches. Each illustrative
approach is described as an instance of the proposed tax-

onomy shown in Section 3, in some cases using a specific

approach and in other cases a set of them. Therefore,

for each presented ARL approach, we show how each

processing component and each communication link par-
ticularly adapts to the ARL taxonomy using current
literature in the respective field for concrete examples.

4.1 Heuristic Reinforcement Learning

Heuristic RL uses pieces of information that generalise

over an area of the state space. The information is

used to assist the agent in decision-making and reduce

the searchable state space (Bianchi et al, 2015; Yang

et al, 2019). An example of a heuristic is a rule. A rule

can cover multiple states, making its use efficient at

delivering advice to an agent. In Section 3.2, we have

introduced a heuristic RL experiment applied to the

RoboCup soccer domain (Celiberto Jr et al, 2007). In

the RoboCup soccer domain, one team actively tries to

score a goal, while the other team tries to block it. As

mentioned, the defending team is given initial advice

before training, consisting of two predefined rules. The

following is an analysis of this heuristic RL example

applied as the ARL taxonomy.
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– Information source: The information source for

the RoboCup experiment is a person. In this case,

the person has previously experimented with the

robot soccer domain and can advise the agent with

some rules that will speed up learning.

– Temporality: The advice for the agent is given be-

fore training begins. Once training has begun the

person does not interact with the agent again. This

is an example of planned assistance, where informa-

tion is given to the agent at a fixed time, and the

information is known by the information source in
advance.

– Advice interpretation: The information needs to

be understandable by the agent. In the robot soccer

domain, the person gives two rules; (i) if not near the

ball then move towards the ball, and (ii) if near the

ball do something with the ball. These rules are un-

derstandable by the human but need to be translated

into machine code so that agent can use them. This

is usually a task easily performed by a knowledge-

able human operator. The result is conditional-like

rules as: (i) IF NOT close to ball() THEN tar-

get and move(), and (ii) IF close to ball() THEN

kick ball().

– Advice structure: The structure of the advice after

being interpreted is a new rule. The rule needs to be

compatible with the agent, including the ability to

substitute variables and evaluate expressions.

– External model: The external model used by the

heuristic RL agent is a rule set. The external model

retains all rules given to it. The model may also

retain statistics about the rule relating to confidence,

number of uses, and state space covered.

– Agent modification: Heuristic RL uses the rule

set to assist the agent in its decision-making. If a rule

applies to the current state, then the action that the

rule recommends is taken by the agent. This is a form

of policy-shaping as the agent’s decision-making is
directly manipulated by the external information.

– Assisted Agent: The RL agent operates as usual.

When it is time to decide on an action to take it

consults the external model. The external model

tests all the rules it has and checks to see if any

applies to the current state, otherwise, the agent’s

default decision-making mechanism is used.

Figure 5 shows how the heuristic RL approach fits

into the proposed ARL taxonomy taking into considera-

tion the previous definitions of processing components

and communication links from the RoboCup soccer do-

main.

Human-domain 
expert

Convert rule to 
machine language

Retained
rule-set

Heuristic Reinforcement Learning

Planned

Machine 
rule

Normal agent

Policy 
shaping

Information source

Temporality

Advice interpretation

Advice structure

External model

Agent modification

Assisted agent

Fig. 5 Heuristic RL components according the proposed ARL
taxonomy. The particular processing components and com-
munication links illustrate a technique used in the RoboCup
soccer domain (Celiberto Jr et al, 2007).

4.2 Interactive Reinforcement Learning

IntRL is another application of ARL. Most commonly,

the information source is an observing human or a sub-

stitute for a human, such as an oracle, a simulated user,

or another agent (Thomaz et al, 2005). The human pro-

vides assessment and advice to the agent, reinforcing

the agent’s past actions and guiding future decisions.

The human can assess past actions in two ways, by stat-

ing that the agent’s chosen action is somehow correct

or incorrect, or by telling the agent what the correct

action to take is in that instance. Alternatively, the

human can advise the agent on what actions to take in
the future (Li et al, 2019). The human can recommend

actions to take or to avoid, or provide more informa-

tion about the current state to assist the agent in its

decision-making (Cruz et al, 2018b).

IntRL applications include having a human to pro-

vide additional reward information (Knox and Stone,

2012b,a), and having a human or agent provide ac-

tion advice (Zhan et al, 2016; Amir et al, 2016). All of
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these methods work in real-time and similarly, differing

mainly in the agent modification stage. The following

is an analysis of these IntRL approaches applied as the

ARL taxonomy.

– Information source: The information source is a

human or simulated user. A simulated user is a pro-

gram, analogous to a human, that acts how a human

would in a given situation. The human can observe

the agent’s current and past states, past actions

taken, and what action the agent recommends it

takes (Bignold et al, 2021a).

– Temporality: IntRL agents operate interactively.

The advisor can provide information to the agent

before, during, or after learning, and repeatedly

throughout the learning process. This allows the
advisor to react to current information and supply

the agent with relevant advice.

– Advice interpretation: The advisor provides ei-

ther an assessment of past actions taken, recommen-
dations about actions to take, or a reward signal.

Computer simulated agents can receive this informa-

tion as key presses. However, physical agents may

receive this information through audio or video in-

puts (Cruz et al, 2016b). In the case of audio inputs,

these may be simple commands such as ’Correct’ or

’Go Right’, which can be translated to a form the

agent can understand (Cruz et al, 2015). Supporting

input modalities such as natural language makes sys-

tems based on IntRL more accessible to users who

are not themselves familiar with RL.

– Advice structure: A common structure of advice

the agent requires is simply a state-action pair. Using

this structure the human can assign advice to a

state for the agent to use, such as: In this state, do

this (Ayala et al, 2019).

– External model: Either retained or immediate

models are commonly used (Fernández and Veloso,

2006; Knox et al, 2012). A retained model tracks

what advice/feedback has been received for each

state (Fernández and Veloso, 2006). The agent can

use this model to determine the human’s accuracy,

consistency, and discount for each piece of advice

received. The model acts as a lookup table for the

agent, if advice exists for the current state, then the

agent can use it. Alternative methods may not retain

information given by the human and only use it for

the current state (Knox et al, 2012).

– Agent modification: The most common methods

of using the advice to modify the agents learning pro-

cess are reward- and policy-shaping (Li et al, 2019).

Reward-shaping uses assessment/critique gathered

from the advisor to alter the reward given to the

agent. If the advisor disagrees with a past action,

Human / simulated 
user

Convert modal cue 
to signal

Retained / 
immediate

Interactive Reinforcement Learning

Interactive

State-action 
pair

Curiosity-driven 
agent

Policy / reward 
shaping

Information source

Temporality

Advice interpretation

Advice structure

External model

Agent modification

Assisted agent

Fig. 6 Interactive RL as the proposed ARL taxonomy. In
this approach, interactive advice is given by the user and more
commonly used as policy and reward shaping.

then the reward received for that state-action pair

is decreased. If the advisor recommends an action

to take in the future, then policy-shaping can be

used to override the agent’s usual action selection

mechanism. One method of implementing policy-

shaping for interactive advice is probabilistic policy

reuse (Fernández and Veloso, 2006).

– Assisted Agent: Most of the time, the RL agent op-

erates as any other RL agent would, i.e., it performs

actions in the environment by exploiting/ exploring.

The agent should continue to do so even if no advice

from the trainer is given. Although a trainer could

proactively provide advice to the learner, sometimes

the student could decide to request such advice,

and the trainer may or may not respond to that

request. For instance, heuristics have been used to

decide if the trainer should provide advice and/or

if the learner should ask for it (Amir et al, 2016).

In contrast, recent work estimates the learner’s un-

certainty in its current state, asking for advice in

case the level of uncertainty is above a predefined

threshold (Da Silva et al, 2020a).
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Figure 6 shows how the IntRL approach is adapted

to the proposed ARL taxonomy taking into account

the previous definitions of processing components and

communication links.

4.3 Reinforcement Learning from Demonstration

RLfD is a term coined by Schaal (Schaal, 1997). It refers

to the setting where both a reward signal and demonstra-

tions are available to learn from, combining the best of

the fields of RL and Learning from Demonstration (LfD).

Since RL presents an objective evaluation of behaviour,

optimal behaviour can be achieved. Such an objective

evaluation of behaviour is not present in LfD (Argall

et al, 2009b), where only expert demonstrations are

available to be mimicked and generalised. The student

can thus not surpass its master. Nevertheless, LfD is
typically much more sample efficient than RL. Therefore,

the aim is to combine the fast LfD method with objec-

tive behaviour evaluation and theoretical guarantees
from RL.

Two different approaches have been proposed to use

demonstrations in an RL setting. The first is the gener-

ation of an initial value-function for temporal-difference

learning by using the demonstrations as passive learn-

ing experiences for the RL agent (Smart and Kaelbling,

2002). The second approach derives an initial policy

from the demonstrations and uses that to kickstart the

RL agent (Brys et al, 2015; Suay et al, 2016). In this

regard, Taylor et al. propose the Human-Agent Transfer
(HAT) algorithm (Taylor et al, 2011), which consists

of three steps: (i) demonstration: the agent performs

the task teleoperated and records all state-action tran-

sitions, (ii) policy summarising: in order to bootstrap

autonomous learning, policy rules are derived from the
recorded state-action transitions, and (iii) independent

learning: autonomous reinforcement learning using the

policy summary to bias the learning. Below we use the

HAT algorithm to describe how RLfD fits into the ARL

taxonomy.

– Information source: An expert of the task (hu-

man or otherwise) can provide sample behaviour

by demonstrating its execution of the task. Prefer-

ably these demonstrations are efficient and successful

executions of the task.

– Temporality: It uses planned assistance. Demon-

strations are recorded and given to the learning agent

before it starts training.

– Advice interpretation: The received demonstra-

tions must be first transformed into the agent’s per-

spective by encoding them as sequences of state-

action pairs. These are then processed using a clas-

Domain expert
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Retained rule 
system

Reinforcement Learning from Demonstration

Planned

Rule system

Curiosity-driven 
agent

Action 
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External model
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Assisted agent

Fig. 7 RL from demonstration as the proposed ARL taxon-
omy. In this case, the processing components and communica-
tion links are defined from the HAT algorithm (Taylor et al,
2011), which combines RL and LfD.

sifier, which serves as the LfD component, creating

an approximation of the demonstrator’s policy using

rules.

– Advice structure: The information is encoded as

a classifier that maps states to the actions which

the demonstrator is hypothesised to execute in those

states.

– External model: The generated rules are stored

in the external model and not modified anymore.

The external model can be queried with a state and

responds with the hypothesised demonstrator action

in that state.

– Agent modification: The action proposed by the

demonstrator can be integrated into the agent through

three action biasing methods: (i) attributing a value

bonus to the Q-value for that state-action pair, (ii)

extending the agent’s action set with an action that

executes the hypothesised demonstrator action, and

(iii) probabilistically choosing to execute the action

suggested by the model.
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– Assisted agent: During its decision-making (when

and how depends on the implemented modification

method) the agent has the option to consult the

external model to obtain the action that the demon-

strator is assumed to take. This kind of agent is some-

times referred to as curiosity-driven agent (Pathak

et al, 2017). Otherwise, the agent acts as a usual RL

agent.

Figure 7 shows how the RLfD approach is adapted

to the proposed ARL taxonomy taking into account

the previous definitions of processing components and

communication links for the HAT algorithm.

4.4 Transfer Learning

The idea of transferring information between tasks (or

between agents), rather than learning every task from

the ground up seems to be obvious in retrospect. While

transfer between different tasks has long been studied in

humans, it has only gained popularity in RL settings in

the last decade (Taylor and Stone, 2009). We consider

three distinct settings where TL can be useful.

First, an agent may have learned how to perform

a task and a new agent must learn to perform that

same task or a variation on the task under different

circumstances. Let us consider two agents with different

state features, i.e., different sensors, or different action

spaces (or different actuators). In this case, an inter-task

mapping (Bou Ammar et al, 2011; Taylor et al, 2007a)

can be hand specified or learned from data (Taylor et al,

2007b; Ammar et al, 2015) to relate the new target

agent to the existing source agent. One of the simplest

ways to reuse such knowledge is to embed it into the

target task agent, e.g., directly reuse the Q-values that

the source agent had learned (Taylor et al, 2007a).

Second, let us now consider that the world may be

non-stationary. In TL settings, it is common to assume

that the agent is notified when the world (or task in that

world) changes. However, a TL agent sometimes does

not need to detect changes (Hernandez-Leal et al, 2016)

or worry about the slow world changes over time (Akila

and Zayaraz, 2015). As in the previous setting, the agent

may want to modify the information, e.g., by using an

inter-task mapping, to relate the two tasks. In addition,

the agent may decide not to use its prior knowledge at

all, e.g., to avoid negative transfer because the tasks are

too dissimilar (Taylor et al, 2007a).

Third, TL could be a critical step within a curricu-

lum learning approach (Taylor, 2009; Bengio et al, 2009).

For example, previous work has shown that learning a

sequence of tasks that gradually increase in difficulty

can be faster than directly training on the final (difficult)
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Retained
source model

Transfer Learning

Planned

Value, rule, 
or model

Normal agent

Action 
biasing

Information source

Temporality

Advice interpretation

Advice structure

External model

Agent modification

Assisted agent

Fig. 8 Transfer learning as the proposed ARL taxonomy. In
this case, an agent with different capabilities (or the same
agent) provides the model of a source task which is transferred
to a target task.

task (Taylor et al, 2007b; Eppe et al, 2019). In addition

to curricula that are created by machine learning ex-

perts, curricula constructed by naive human participants

have also been considered (Peng et al, 2017). Others

have considered as a complementary problem a learning

agent autonomously creating a curriculum (Narvekar

et al, 2017; Da Silva and Costa, 2018). In all cases, the

difficulty is scaffolding correctly so that the agent can

learn quickly on a sequence of tasks. These approaches

are distinct from multi-task learning (Fernández and

Veloso, 2006), where the agent wants to learn over a

distribution of tasks, and lifelong learning (Chen and

Liu, 2016; Parisi et al, 2019), where learning a new task
should also improve performance on previous tasks. The

following is an analysis of TL methods in terms of the

ARL taxonomy.

– Information source: The information comes from

an agent with different capabilities or the same agent

that has trained on a different task.

– Temporality: Transfer typically occurs when a task

changes or when an agent first faces a novel task. In
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both cases, it is planned assistance, i.e., the source

agent transfers knowledge to the target agent before

the target agent begins learning. If the inter-task

mapping is initially unknown, some time may be

spent trying to learn an inter-task mapping or esti-

mate task similarity to previous tasks. However, the

more time spent before the transfer, the less impact

transfer can have.

– Advice interpretation: There are many types of

information that can be transferred, including Q-

values, rules, a model, etc. (Taylor et al, 2007a). TL
methods assume the target agent has access to the

source agent’s ‘brain’, an assumption that may not

always be true, e.g., if the designer of the source

agent has not provided an API or if the source agent

is a human.

– Advice structure: The structure of the transferred

knowledge is as varied as the types of information

that can be provided. This variety of information

includes Q-values, rules, or a model, among others.

– External model: The source model is normally re-

tained. Because the source task knowledge is not

necessarily sufficient for optimal performance in the

target task, it is important for the target agent to

be able to learn to outperform the transferred infor-

mation.

– Agent modification: The target task agent uses

the transferred information to bias its learning. The

transferred knowledge is not typically modified. In-

stead, the target task agent builds on top of the

knowledge, learning when to ignore it and instead

follow the knowledge it has learned from the envi-

ronment.

– Assisted Agent: The agent is a typical RL agent

that can take advantage of one or more types of prior

knowledge.

Figure 8 shows how the TL approach can be repre-

sented within the proposed ARL taxonomy taking into

account the previous definitions of processing compo-

nents and communication links.

4.5 Multiple Information Sources

While the majority of work in ARL is based on a sin-

gle source of advice, several researchers have consid-

ered scenarios where multiple sources of advice may

exist (Brys et al, 2017; Da Silva, 2019; Gimelfarb et al,

2018; Yamagata et al, 2019). Although the use of mul-

tiple information sources is not an ARL approach by

itself and could comprise sources utilising any of the

previously mentioned approaches, we include it here to

highlight how this multiple sources can be framed within

Multi-users or 
multi-agent system

Multi-source 
integration

Separated or 
combined model

Multiple Information Sources

Planned or 
interactive

Integrated 
advice

Multi-policy 
agent

Weighted 
combination

Information source

Temporality

Advice interpretation

Advice structure

External model

Agent modification

Assisted agent

Fig. 9 Multiple information sources as the proposed ARL
taxonomy. In this case, there could be multiple humans or
multiple agents. One important aspect is to integrate the
different pieces of advice. The agent may also learn multiple
policies as in multi-objective RL.

the proposed taxonomy. The introduction of multiple

advisors may have benefits for ARL agents, particularly

in scenarios where each individual advisor has knowl-

edge which is limited in some way (Shelton, 2001), e.g.,

individual advisors may have expertise covering differ-

ent sub-areas of the problem domain. However, it also
introduces additional problems for the agent, such as

handling inconsistencies or direct conflicts between the

guidance provided by different advisors, or learning to

judge the reliability of each advisor, possibly in a state-

sensitive manner (Zhan et al, 2016). In the extreme

case, an agent may even need to be able to identify and

ignore the advice provided by deliberately malicious

advisors (Nunes and Oliveira, 2003). The following is

an analysis of approaches using multiple information

sources with respect to the proposed ARL taxonomy.

– Information source: Prior research has identified

several scenarios in which an agent may have access

to multiple sources of external information. Argall

et al. (Argall et al, 2009a) argue that when robots
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are applied to tasks within society in general, it is

very likely that multiple users will interact with and

guide the behaviour of a robot. In the context of

TL, multiple sources of information may be derived

either from experience on varying MDPs (Parisotto

et al, 2015), or on alternative mappings from a single

prior MDP to the current environment (Talvitie and

Singh, 2007). In multi-agent systems, each agent may

serve as a potential source of information for every

other agent (Da Silva et al, 2017; Fachantidis et al,

2019).

– Temporality: Assistance may be planned or inter-

active. For instance, Argall et al. (Argall et al, 2009a)

have considered two different sources of information,

in the form of teacher demonstrations and teacher

feedback on trajectories generated by the learner.

The former may be provided in advance of learning

consisting of complete state-action trajectories, i.e.,

planned assistance, while the latter occurs on an

interactive basis during learning, and structurally

consists of a subset of the learner’s actions being

flagged as correct by the teacher, i.e., interactive

assistance.

– Advice interpretation: The majority of work so

far on ARL from multiple information sources has as-

sumed that these sources are homogeneous in terms

of the timing and nature of the information pro-

vided. However, this need not be the case, and for

heterogeneous information sources, some aspects of

the advice may differ in terms of interpretation and

structure. In this regard, the advice needs to be inte-

grated considering either all possible sources (equally

or non-equally contributing), some sources (with the
information provided partially or fully considered),

or only from one source at a time (Shelton, 2001).

– Advice structure: Each information source may

use a different structure of advice. Therefore, individ-

ually all the aforementioned structures in previous
sections are possible to be used, e.g., machine rule,

state-action pair, rule system, value, or model. The

final structure into a single piece of advice may be

done by integrating the multiple information sources,

for instance using a multi-modal integration func-

tion (Cruz et al, 2016b) or using graph structures

(e.g., graph neural networks) using causal links be-

tween features for multi-modal causability (Holzinger

et al, 2021).

– External model: An ARL agent must choose whether

(i) to maintain a separate model for each informa-

tion source, (ii) to combine the information from all

sources into a single model, or (iii) a combination

of both. An example of the latter approach is the

inverse RL system presented in (Karlsson, 2014),

which learns a model of each information source in

the form of a feature-weighting function and then

forms a combined feature-weighting via averaging.

As noted by Karlsson (Karlsson, 2014), single-model

approaches may encounter difficulties if dealing with

information sources which are fundamentally incom-

patible with each other. An additional benefit of

maintaining independent models is that these can

also be augmented by additional data on characteris-

tics of each information source, such as the reliability

or consistency of its advice (Argall et al, 2009a; Talvi-
tie and Singh, 2007).

– Agent modification: Any of the modification ap-

proaches discussed in the earlier sections of this

paper may also be applied in the context of multi-

ple information sources. For example, agent mod-

ification methods from LfD (Argall et al, 2009a),

TL (Talvitie and Singh, 2007; Parisotto et al, 2015),

reward-shaping (Brys et al, 2014; Knox et al, 2013)

as well as inverse RL (Karlsson, 2014; Tanwani and

Billard, 2013). The main additional consideration is

how these methods may be affected by the presence

of multiple external models. The main methods ex-

amined so far use a combination of the models, either

weighted or unweighted (Argall et al, 2009a; Karls-

son, 2014) or select a single best model to use (Talvi-

tie and Singh, 2007).

– Assisted Agent: In most circumstances, the op-

eration of the agent itself is largely unaffected by

the presence of more than one information source.

However, Tanwani and Billard (Tanwani and Billard,

2013) consider the task of performing inverse RL

from multiple demonstrations provided by multiple
experts, operating according to different strategies

or preferences. To address the potential incompati-

bilities between these strategies, the agent attempts

to learn a set of multiple policies, so as to be able

to satisfy any policy expert strategy, including those
not provided to the agent. This approach is closely

related to multi-policy algorithms developed for mul-

tiobjective RL (Roijers et al, 2013).

Figure 9 shows how an approach using multiple infor-

mation sources is adapted to the proposed ARL taxon-

omy taking into account the previous definitions of pro-

cessing components and communication links. Moreover,

Table 1 summarises how each of the ARL approaches

and examples reviewed in this section is adapted to the

proposed taxonomy.
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Table 1 Summary of the reviewed assisted reinforcement learning approaches adapted to the proposed taxonomy.

Approach
Information

source
Tempora-

lity

Advice
interpre-

tation

Advice
structure

External
model

Agent
modifi-
cation

Assisted
agent

Heuristic
reinforcement
learning

Human-
domain
expert

Planned

Convert
rule to
machine
language

Machine
rule

Retained
rule-set

Policy
shaping

Normal
agent

Interactive
reinforcement
learning

Human /
simulated
user

Interactive
Convert
modal cue
to signal

State-
action
pair

Immediate
Policy /
reward
shaping

Curiosity-
driven
agent

Reinforcement
learning from
demonstration

Domain
expert

Planned

Convert
demonstra-
tion to
agent’s
perspective

Rule
system

Retained
rule system

Action
biasing

Curiosity-
driven
agent

Transfer
learning

Agent with
different
capabilities

Planned
Q-values,
rules, or
models

Value, rule,
or model

Retained
source
model

Action
biasing

Normal
agent

Multiple
information
sources

Multi-users
or
multi-agent
system

Planned or
interactive

Multi-
source
integration

Integrated
advice

Separated
or combined
model

Weighted or
unweighted
combination

Multi-
policy
agent

5 Future Directions and Open Challenges

In this section, we discuss open issues and propose fur-

ther possibilities for future work in the field of ARL.

These open questions have been identified from the cur-

rent literature in the field. Many of these issues are

shared with autonomous RL but it still remains open

how they could be addressed within the ARL framework.

5.1 Incorrect Assistance

A common assumption that ARL methods make is that
all external information that the agent receives is ac-

curate (Efthymiadis et al, 2013). Accurate information

is correct advice that assists the agent in completing

its goal. However, the assumption that information will

always be of use to the agent is wrong, especially when

the information source is an observing human, as in

RL from imperfect demonstrations (Gao et al, 2018;

Jing et al, 2020). Humans may deliver advice late, and

therefore the agent may relate it to a wrong state. The

advice may be of short-term use to the agent but pre-

vent it from achieving optimal performance. Moreover,

the human trainer may even be malicious and actively

attempting to sabotage the agent’s performance.

Incorrect information can be introduced by other

sources as well. Some examples for non-human incor-

rect advice include behaviour transferred from another

domain that does not align correctly, rules that gener-

alise over multiple states which may cover exception

states, and noisy or missing information from audio-

visual sources (Cruz et al, 2016b).

Information given to agents may be correct initially,

but over time no longer be the optimal solution (Akila

and Zayaraz, 2015). Other advice may be mostly ac-

curate or correct for most states, however, there can

exist states of exception to the advice. These exception

states can be the critical difference between an ordinary

solution and the optimal solution. There is a need for

research on how to identify and mitigate incorrect in-

formation in these scenarios, especially considering that

even a very small amount of incorrect advice may be

really detrimental for the learning process (Cruz et al,
2018a).

5.2 Multiple Information Sources

As reviewed in the previous section, the use of multiple

information sources may naturally arise on some appli-

cation scenarios, and can increase the agent’s knowl-

edge of the environment, and increase confidence in

decision-making if the different sources agree on an

action. However, the use of multiple sources raises addi-

tional questions:

– What if the different sources disagree on the best

action to take?
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– How can the agent identify the best information

source to listen to?

– How can the agent manage conflicting information?

– How can the agent measure trust in the different

information sources?

Additionally, the use of multiple sources may be

extended to crowdsourcing (Kamar et al, 2012). In this

context, crowdsourcing refers to the enlistment and

use of a large number of people, either paid or unpaid

and can range in size from tens to tens of thousands.

Typically, crowdsourcing is performed via the internet.

This can raise challenges of malicious users, anonymity,

and large uncertainty in the value and reliability of the

information.

5.3 Explainability

Explainability refers to translating the agent’s infor-

mation into a form the human can understand (Cruz

et al, 2019; Dazeley et al, 2021b). The reasons why an

agent develops certain behaviours can sometimes be dif-

ficult to understand for non-expert end-users. Systems

to measure the quality of explanations generated by

AI-based systems have been previously introduced in

order to build effective and efficient human-AI interac-

tion (Holzinger et al, 2020). When combining the RL

method with policy modification methods such as rules,

expert assistance, external models, and policy-shaping,

understanding why an agent chooses to take an action

becomes even more difficult. Developing methods for un-
derstanding agent learning and its decision-making is im-

portant as it allows the human to remain informed of the

agent’s motivations and decisions, and keep track of the

accountability of the actions taken (Dazeley et al, 2021a).

This can be beneficial for artificial intelligence ethics,
and human-computer teaching, among other fields.

5.4 Two-Way Communication

Two-way communication refers to the ability for the

information source and the agent to converse with each

other, perhaps multiple times before making a deci-

sion (Kessler Faulkner et al, 2019). Two-way commu-

nication can allow the information source, presumably

human, and the agent to ask questions to each other, re-

quest more information, and to clarify decision-making

and its reasoning. Although the proposed framework

includes two-way communication, as shown in Figure 1,

most current ARL methods do not have two-way commu-

nication to the extent that non-expert human advisors

can interact with the agent freely. For two-way commu-

nication to apply to non-expert human advisors issues of

explainability (as shown in the previous section), timing,

and agent initiation need to be addressed.

Timing refers to the time it takes to communicate

back and forth. Agents sometimes have a fixed time

limit, during which they need to learn, communicate,

and decide on the next action. Methods for reducing the

time it takes to interact with the human and reducing

the number of interactions needed with the human are

two areas open for research. Agent initiation refers to

the ability for the agent to initiate communication with

the human source itself. The agent may choose to do

this so to request clarification on information, or request

assistance for decision-making. A challenge for agent

initiation is to determine when and how often the agent

should request assistance. The requests for assistance

should be frequent enough to make use of the informa-

tion source while not becoming a nuisance to the human,

or detracting from learning time, and should consider

the cost of the request, e.g., in paid crowdsourcing.

5.5 Other Challenges

There are also other challenges to be considered for

future possibilities of ARL systems. Although many

of the issues described in this section are also shared

with autonomous RL (Mankowitz et al, 2019), we focus

the discussion on how particularly externally-influenced

agents may be affected in the context of the ARL frame-

work. While we describe the essential implications on

ARL systems for each of the following areas, we note

that further and deeper discussion may be addressed
for each of them.

– Real-time policy inference: Many RL systems

need to be deployed in real-world scenarios and,

therefore, policy inference must happen in real-time

(Koenig and Simmons, 1993). Using ARL frameworks

may lead to additional issues since the external in-

formation source should observe and react to the

RL agent’s state as fast as possible, otherwise the

assistance may become unnecessary or incorrect for

the new reached state.

– Assistance delay: There are RL systems where de-

termining the state or receiving the reward signal

may take even weeks, such as a recommender system

where the reward is based on user interaction (Mann

et al, 2018). In these contexts, the external infor-

mation source may also lead to unknown delays in

the system actuators, sensors, or rewards, making

the assistance atemporal, either delayed or ahead,

or even in some cases being conflicting or redundant

considering the RL agent’s autonomous operation.



A Conceptual Framework for Externally-influenced Agents: An Assisted Reinforcement Learning Review 19

– Continuous states and actions: When an RL

agent works in high-dimensional continuous state

and action spaces (Millán et al, 2019; Ayala et al,

2019) there could be issues for learning even in tra-

ditional RL (Dulac-Arnold et al, 2015). In an ARL

framework, additional problems may be present as

the agent uses external information which may be not

accurate enough given the high dimensionality. In

the presence of high-dimensional states and actions,

even small differences in the received assistance may

substantially slow the learning process since these
differences may represent in essence a very different

state or action.

– Safety constraints: In RL environments, there are

safety constraints that should never or at least rarely

be violated (Karimpanal et al, 2019). Special care is

needed when receiving information from an external

source since there could be situations that the advisor

may repeatedly direct the agent to unsafe states and,

in turn, lead to an increase in the time needed for

learning.

– Partially observable environments: In practice,

many RL problems are partially observable (Chen

et al, 2018). For instance, partial observabilities may

occur in non-stationary environments (Millán et al,

2019) or in presence of stochastic transitions (Cruz

et al, 2021). If the external information source does

not have observations to clearly infer the current

state in the environment may lead to giving incorrect

assistance to the learner agent.

– Multi-objective reward: In many cases, RL agents

need to balance multiple and conflicting subgoals,

therefore, they may use multi-dimensional reward
functions (Vamplew et al, 2020). In this regard, an

external information source may give priority to a

particular subgoal over the others, unbalancing the

global reward function. There could be also issues

when multiple information sources are used covering
or favouring different subgoals. Moreover, when us-

ing a multi-objective reward in TL, there could only

be some subgoals from the source task which are

relevant in the target task, therefore, the RL agent

should also coordinate and filter relevant informa-

tion.

– Multi-agent systems: There could be multiple

agents learning a task and multiple external infor-

mation sources. In this case, if an information source

provides advice it could be generalised to all of them

or it could be pointed specifically to an agent. More-

over, advice useful for one agent may be detrimental

to another, depending on the state, the agent’s cur-

rent knowledge, or its particular reward function.

Using multiple information sources, if an agent con-

sults an external source, it may be necessary to

discriminate which one is the best for the particu-

lar state. Additionally, the teacher-student approach

usually integrated into ARL requires the teacher to

be an expert in the learning domain. In this regard,

multiple learning agents may also advise each other

while learning in a common environment (Da Silva

et al, 2017).

6 Conclusions

In this article, we have reviewed ARL methods and pre-

sented an ARL framework, comprising all RL techniques

that use external information. ARL methods use exter-

nal information to supplement the information the agent

receives from the environment to improve performance

and decision-making.

To describe the different ARL methods, we propose

a taxonomy to classify the different functions of an

externally-influenced RL agent. Through the analysis of

the current literature, we have found seven key features

that make up an ARL technique. They are divided into

four processing components and three communication

links. A definition and examples of each of these seven

features have been presented.

The contribution of this paper is twofold: the review

of state-of-the-art ARL methods and the ARL taxonomy

as an additional level of abstraction. However, future

work framed into our proposed ARL taxonomy can
also make use of the different concepts here defined,

either processing components or communication links.

In this regard, it is essential to understand that not

each ARL method must necessarily use all the proposed

concepts. In some cases, simplified models may also be
a representation of the ARL framework.

Additionally, we demonstrated the applicability of

the framework on different ARL fields. These areas

include heuristic RL, IntRL, RLfD, TL, and multiple in-

formation sources. Each of these fields has been analysed
and described as applied to the presented taxonomy. Fi-

nally, we also present some ideas about areas for future

research in order to extend the ARL field.
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Ayala A, Henŕıquez C, Cruz F (2019) Reinforcement

learning using continuous states and interactive feed-

back. In: Proceedings of the International Conference

on Applications of Intelligent Systems, pp 1–5

Banerjee B (2007) General game learning using knowl-

edge transfer. In: Proceedings of the International

Joint Conference on Artificial Intelligence IJCAI, pp

672–677

Barros P, Tanevska A, Cruz F, Sciutti A (2020) Moody

learners-explaining competitive behaviour of reinforce-

ment learning agents. In: 2020 Joint IEEE 10th In-

ternational Conference on Development and Learning

and Epigenetic Robotics (ICDL-EpiRob), IEEE, pp

1–8

Behboudian P, Satsangi Y, Taylor ME, Harutyunyan

A, Bowling M (2020) Useful policy invariant shap-

ing from arbitrary advice. In: AAMAS Adaptive and

Learning Agents Workshop ALA 2020, p 9

Bengio Y, Louradour J, Collobert R, Weston J (2009)
Curriculum learning. In: Proceedings of the Interna-

tional Conference on Machine learning ICML, ACM,

New York, NY, USA, pp 41–48

Bianchi RA, Celiberto Jr LA, Santos PE, Matsuura

JP, de Mantaras RL (2015) Transferring knowledge

as heuristics in reinforcement learning: A case-based

approach. Artificial Intelligence 226:102–121

Bignold A, Cruz F, Dazeley R, Vamplew P, Foale C

(2020) Human engagement providing evaluative and

informative advice for interactive reinforcement learn-

ing. arXiv preprint arXiv:200909575

Bignold A, Cruz F, Dazeley R, Vamplew P, Foale C

(2021a) An evaluation methodology for interactive re-

inforcement learning with simulated users. Biomimet-

ics 6(1):13

Bignold A, Cruz F, Dazeley R, Vamplew P, Foale C

(2021b) Persistent rule-based interactive reinforce-

ment learning. Neural Computing and Applications

pp 1–18

Bou Ammar H, Taylor ME, Tuyls K, Weiss G (2011)

Reinforcement learning transfer using a sparse coded

inter-task mapping. In: European Workshop on Multi-
Agent Systems, Springer, pp 1–16

Breyer M, Furrer F, Novkovic T, Siegwart R, Nieto J

(2019) Comparing task simplifications to learn closed-

loop object picking using deep reinforcement learning.

IEEE Robotics and Automation Letters 4(2):1549–
1556
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Yamagata T, Santos-Rodŕıguez R, McConville R, Elsts

A (2019) Online feature selection for activity recogni-

tion using reinforcement learning with multiple feed-

back. arXiv preprint arXiv:190806134

Yang MC, Samani H, Zhu K (2019) Emergency-response

locomotion of hexapod robot with heuristic reinforce-
ment learning using q-learning. In: Proceedings of the

International Conference on Interactive Collaborative

Robotics, Springer, pp 320–329

Zhan Y, Ammar HB, Taylor ME (2016) Theoretically-

Grounded Policy Advice from Multiple Teachers in

Reinforcement Learning Settings with Applications to
Negative Transfer. In: Proceedings of the International

Joint Conference on Artificial Intelligence IJCAI

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong

H, He Q (2020) A comprehensive survey on transfer

learning. Proceedings of the IEEE 109(1):43–76


