
Journal Neural Computing and Applications manuscript No.
(will be inserted by the editor)

Persistent Rule-based Interactive Reinforcement Learning

Adam Bignold1,∗ · Francisco Cruz2,3,∗ · Richard Dazeley2 ·
Peter Vamplew1 · Cameron Foale1

Received: date / Accepted: date

Abstract Interactive reinforcement learning has al-
lowed speeding up the learning process in autonomous
agents by including a human trainer providing extra
information to the agent in real-time. Current interac-
tive reinforcement learning research has been limited
to real-time interactions that offer relevant user advice
to the current state only. Additionally, the information
provided by each interaction is not retained and instead
discarded by the agent after a single-use. In this work,
we propose a persistent rule-based interactive reinforce-
ment learning approach, i.e., a method for retaining and
reusing provided knowledge, allowing trainers to give
general advice relevant to more than just the current
state. Our experimental results show persistent advice
substantially improves the performance of the agent
while reducing the number of interactions required for
the trainer. Moreover, rule-based advice shows similar
performance impact as state-based advice, but with a
substantially reduced interaction count.

Keywords Reinforcement learning · Interactive
reinforcement learning · Persistent advice · Rule-based
advice.

This work has been partially supported by the Australian
Government Research Training Program (RTP) and the RTP
Fee-Offset Scholarship through Federation University Aus-
tralia.

1 School of Science, Engineering and Information Technology,
Federation University, Ballarat, Australia.
2 School of Information Technology, Deakin University,
Geelong, Australia.
3 Escuela de Ingenieŕıa, Universidad Central de Chile,
Santiago, Chile.
∗ Both authors contributed equally to this manuscript.
Corresponding e-mails:
{a.bignold, p.vamplew, c.foale}@federation.edu.au,
{francisco.cruz, richard.dazeley}@deakin.edu.au.

1 Introduction

Interactive reinforcement learning (IntRL) allows a trainer
to guide or evaluate a learning agent’s behaviour [1, 2].
The assistance provided by the trainer reinforces the be-
haviour the agent is learning and shapes the exploration
policy, resulting in a reduced search space [3]. Current
IntRL techniques discard the advice sourced from the
human shortly after it has been used [4, 5], increasing
the dependency on the advisor to repeatedly provide
the same advice to maximise the agent’s use of it.

Moreover, current IntRL approaches allow trainers
to evaluate or recommend actions based only on the
current state of the environment [6, 7]. This constraint
restricts the trainer to providing advice relevant to the
current state and no other, even when such advice may
be applicable to multiple states [8]. Restricting the time
and utility of advice affect negatively the interactive
approach in terms of creating an increasing demand on
the user’s time, instead of withholding potentially useful
information for the agent [2]. In this regard, interac-
tion is advice received from a trainer agent, and this
trainer may be either a human, a simulated user, an
intelligent agent previously trained, or an oracle with
full knowledge of the intended task [5].

This work introduces persistence to IntRL, a method
for information retention and reuse. Persistent agents
attempt to maximise the value extracted from the ad-
vice by replaying interactions that occurred in the past,
rather than relying on the advisor to repeat an interac-
tion. Agents that retain advice require fewer interactions
than non-persistent counterparts to achieve similar or
improved performance, thus reducing the burden on the
advisor to provide advice on an ongoing basis.

Additionally, this works introduces a persistent rule-
based IntRL approach. Allowing users to provide in-
formation in the form of rules, rather than per-state
action recommendations, increases the information per
interaction, and does not limit the information to the
current state. By not constraining the advice to the
current state, users can give advice pre-emptively, no

Cite as: Bignold, A., Cruz, F., Dazeley, R., Vamplew, P., Foale, C. Persistent Rule-based Interactive
Reinforcement Learning. Neural Computing and Applications. In press (2021). This version of the article has
been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00521-021-06466-w.
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/acceptedmanuscript-terms

2 A. Bignold et al.

EnvironmentRL Agent

action at

state st+1

reward rt+1

User

advice λt

Reinforcement LearningPersistent
advice λ

Fig. 1: Interactive reinforcement learning framework. In
traditional RL an agent performs an action and observes
a new state and reward. In the figure, the environment
is represented by the simulated self-driving car scenario
and the RL agent may control the direction and speed
of the car. IntRL adds advice from a user acting as
an external expert in certain situations. Our proposal
includes the use of persistent rule-based advice in order
to minimise the interaction with the trainer.

longer requiring the current state to match the crite-
ria for the user’s assistance. This more informationally
rich interaction method improves the performance of
the agent compared to existing methods and reduces
the number of interactions between the agent and the
advisor. Considering that advice in IntRL comes from
expert users, the total amount of interaction is relevant.
A lower dependency on experts makes the approach fea-
sible to work in real-world scenarios (e.g., human-robot
interaction) in which a human expert may be available
for a very limited number of steps.

Therefore, the contribution of this work is twofold.
First, the introduction of a state-based method for the
retention and reuse of advice, named persistence. Second,
a persistent rule-based IntRL method obtaining the
same performance as state-based advice, but with a
substantially reduced interaction count. In this regard,
rules allow advice to be provided that generalises over
multiple states.

2 Rule-based Interactive Advice

2.1 Reinforcement Learning and Interactive Advice

Reinforcement learning (RL) [9] is a machine learning
technique that allows an agent to learn the dynamics of
an environment by interacting with it. When interacting
the agent transits from the current state st to a new state
st+1 by performing action at. Additionally, the agent
receives a reward value rt+1 for the actions performed.
During this process, the agent observes both the new
states and the reward signal and learns a policy π : S →
A, where S is the set of all possible states andA the set of
actions available from S. Figure 1 shows the traditional
RL loop between the agent and the environment inside
the grey box.

An environment in an RL problem can be described
as a Markov decision process (MDP) [10]. An MDP in
defined as a 4-tuple < S,A, δ, r >, where S is a finite
set of states, A is a set of actions, δ is the transition

function δ : S × A → S, and, r is the reward function
r : S ×A→ R.

In an MDP, a state with the Markovian property con-
tains all the information about the dynamics of the task,
i.e., the next state and the reward depend only on the
action selected. Therefore, the history of previous tran-
sitions is not relevant in terms of the decision-making
problem [9]. Thus, the probability that st, rt, and at
take values s′, r and a with the previous state being s
is given by:

p(s′, r|s, a) = P (st = s′, rt = r|st−1 = s, at−1 = a). (1)

By interacting with the environment, an agent has
to deal with the exploration/exploitation trade-off prob-
lem, that is, the agent has to explore the action space
offsetting the already explored good actions with oth-
ers that it never tried [11]. Hence, the agent needs a
strategy to choose actions to perform in a given state.
An alternative is to use the ε-greedy action selection
method. This method uses an exploration factor (ε)
which is randomly chosen from a uniform distribution.
The probability P (st, a) of selection action a in state st
can be formally defined as:

P (st, a) =

{
1− ε if a = argmax

ai∈A(st)

Q(st, ai)

ε otherwise
(2)

Although RL is a plausible learning approach, the
agent has to interact with complex state spaces in many
situations. This leads to excessive computational cost in
order to find the optimal policy and fully autonomous
learning becomes impractical [12, 13].

Interactive reinforcement learning (IntRL) is a field
of RL research in which a trainer interacts with an
RL agent in real-time [14]. IntRL includes an exter-
nal trainer τ as an expert to provide advice λ for the
learning agent in certain situations [14]. In this regard,
IntRL has been proven as an effective method to speed
up the learning process for an artificial agent [15, 16].
The advice λ provided by the expert trainer may be
either evaluative or informative, i.e., it judges the last
action performed by the agent or it suggests an action to
perform next, respectively [17]. Current IntRL methods
limit guidance and evaluation to the current state of
the agent, regardless of whether the conditions for the
information are shared among multiple states [5, 18].
Therefore, in a particular time step during the learn-
ing process, the IntRL agent makes use of the received
advice λt only in that situation, i.e., only in state st.
After using advice λt at time step t, the agent disregard
the advice, not making persistent use of it in case of
facing the same situation or a similar one in the future.
This constraint requires the advising user to constantly
monitor the current state of the agent and wait until con-
ditions that suit the advice they wish to provide are met
again. This lack of generalisation increases the number
of interactions and the demand on the user [19, 18].

Persistent Rule-based Interactive Reinforcement Learning 3

In this work, we propose using the advice λt persis-
tently during the learning process when facing the same
state s in a different time step. Furthermore, we use the
same provided advice as a rule for similar situations,
i.e., when the agent is in any state s ∈ S where the rule
may be used, then the advice is reused.

2.2 Rule-based Learning

In computer science, a rule is a statement consisting
of a condition and a conclusion. A simple example of
a rule is ‘IF p THEN q’, dictating that if the condi-
tion of p is met, then the conclusion is q. Additional
qualifiers may supplement rules, allowing for a rules
condition or conclusion to be constructed to meet spe-
cific demands. When teaching or conveying information
between people, one form of knowledge transfer is rules.
While the syntax of the rule is not necessarily formal,
the relation of condition and conclusion is maintained.
Moreover, conditions and conclusions are quickly identi-
fiable by humans when natural language is used. Recent
advances in speech-to-text systems have demonstrated
the ability to identify the condition and conclusion in
human speech [20]. The ease with which humans can
identify rules for knowledge transfer, and the ability for
machines to translate speech to rules, means that rules
are an increasingly viable option for knowledge transfer
for non-technical users [21].

A user may create multiple rules over the duration
of their assistance to an agent [22]. As a result, a single
state may have multiple rules, each with conflicting ad-
vice for the current state. In this regard, binary decision
trees offer a method of structuring rules in such a way
that only one conclusion is given for each state [23].
Algorithms such as ID3 [24] and CART [25] allow the
design of the decision tree to be automated, provided
that large amounts of labelled data are available.

The usual methods for building decision trees do
not meet the IntRL constraints. IntRL does not have
access to large amounts of labelled data and aims to be
within the skill level of non-expert users, not specialised
knowledge engineers [13]. Rule-based IntRL requires a
method for generating binary decision trees without the
need for expert skills in knowledge engineering, without
large amounts of labelled data, and that can be built
iteratively without the need for the user to know the
full context of the tree.

In relational RL, a combination between RL and
inductive logic programming, logical decision trees have
been used [26, 27]. An important difference with clas-
sical decision trees is that logical decision trees use a
relational database or knowledge base to describe a set
of facts. However, a key issue in this representation is
the background knowledge needed to use inductive logic
programming. Additionally, another problem that does
not benefit the use of algorithms such as Q-learning with
relational function abstraction is the nature of Q-values.
Q-values encode both the distance to and the size of the

next reward, this becomes especially hard to predict in
stochastic and highly complex tasks [28].

Case-based reasoning (CBR) has been also combined
with RL to accelerate learning by making use of heuris-
tic information [29]. These approaches use a heuristic
function to choose the next action to be taken. For
instance, the case-based heuristically accelerated RL
(CB-HARL) algorithm proposes the reuse of previously
learned policies using CBR [30]. In CB-HARL, previous
to the action selection, the case similarity is computed
based on the current state and the cost of adapting these
cases. The use of heuristics from a base of cases has also
led to the development of transfer learning approaches
in machine learning [31, 32]. These methods also deserve
attention since they may be converted into interactive
methods with straightforward adaptations.

Ripple-down rules (RDR) is a well-known iterative
technique for building and maintaining binary decision
trees [33, 34]. RDR is a combination of decision trees
and case-based reasoning [35]. A case is a collection of
potentially relevant material that the system uses to
make a classification and is equivalent to the concept of
states in RL. Each node in an RDR system contains a
rule, a classification, and a case. The case paired with
each node is referred to as the ‘cornerstone case’ and
justifies the node’s creation [36].

RDR systems require the user to only consider the
difference between the current case and the cornerstone
case [36]. Using this methodology, the user does not need
to know the context of the entire system, or how new
rules will impact its structure. The iterative nature of
RDR also negates the need for large amounts of labelled
data. Instead, the tree is built using the gradual flow of
cases that any decision tree system is subject to. These
features make RDR suitable to structure rule-based
advice in IntRL scenarios.

3 A Persistent Rule-based Interactive
Approach

The method for retention and reuse of advice proposed
here combines the concept of modelling demonstrations,
with the evaluative and informative interaction method-
ology from IntRL [3]. This combination, resulting in
retained advice, allows an agent to maximise the utility
of each interaction. Additionally, a rule-based IntRL
approach would further minimise the advisor demand.
Rule-structured advice allows information to be gener-
alised over multiple states. This reduces the interactions
required with the human advisor while simultaneously
increasing the potential benefit each interaction has on
the agent’s behaviour. The generalisation occurs because
the user can specify the conditions in which the informa-
tion is applicable, allowing the advice to be generalised
beyond the current state. The agent can then check each
state it encounters to see if the conditions are met, at
which point the recommendation or evaluation can be
utilised.

4 A. Bignold et al.

3.1 Persistent State-based Interaction

As introduced, we propose a persistent agent that keeps
a record of each interaction and the conditions in which
it occurred. When the conditions are met in the future,
the interaction is replayed. This results in improved
utilisation of the advice and consequently, improved per-
formance of the agent. Additionally, fewer interactions
with the trainer are required, as there is no need for
advice to be repeatedly provided for each state.

However, a naive implementation of persistence can
introduce flaws into the reward-shaping process. These
flaws, if unaddressed, may cause the agent to never learn
an optimal policy. Prior work on reward-shaping [37]
has shown that while reward-shaping can accelerate
learning, it can also result in the optimal policy under
the shaping reward differing from that which would be
optimal without shaping. Ng et al. [38] demonstrated
that this issue can be avoided by using a potential-based
approach to constructing the shaping reward signal. This
guarantees that the rewards obtained along any path
from a state back to itself are zero-sum so that the agent
will not find a loop in the environment that will provide
infinitely accumulating rewards without termination [39].
For non-persistent IntRL agents, the reward given as
part of the evaluation is temporary as the human has
to provide the supplemental reward upon revisiting the
state. Assuming that the human will eventually stop
providing advice, the reward signal will become zero-
sum [40].

For IntRL agents that use policy-shaping, i.e., recom-
mendations on which action to perform next, a straight-
forward implementation of persistence will work if the
advice is correct. However, human advice is rarely 100%
accurate [3]. Inaccuracy can result from negligence, mis-
understanding, latency, maliciousness, and noise intro-
duced when interpreting advice. Furthermore, if the
agent always performs the recommended action, then it
is not given the opportunity to explore and discover the
optimal action. An agent that retains and reuses inaccu-
rate advice will not learn an optimal policy. Therefore, it
is important that the agent be able to discard or ignore
retained knowledge.

These two issues with persistence, non-potential
reward-shaping and incorrect policy-shaping advice, re-
sult in persistent agents being unable to learn the op-
timal policy. The issue of inaccurate advice with per-
sistence has two possible solutions, either identify the
incorrect advice and discard it or discard all advice after
a period regardless of its accuracy. To know the accu-
racy of a piece of advice a full solution to the problem
must be known, and if this is achievable then an RL
agent is not needed. Instead, a policy of discarding or
ignoring advice after a period allows a persistent agent
to function with potentially inaccurate advice, while still
maximising the utility of each interaction. This method
also solves the issue of non-potential evaluative advice,
as the frequency of the supplemental reward is reduced
over time until zero. Once the supplemental reward is

reduced to zero, the cumulative shaping reward function
becomes zero-sum once again.

Therefore, to solve the issue of incorrect advice in
persistent IntRL, a method for discarding or ignoring
advice after a period of time is needed. Probabilistic
policy reuse (PPR) is a technique that aims to improve
RL agents that use guidance [41]. PPR relies on using
probabilistic bias to determine which exploration policy
to use when multiple options are available, the goal of
which is to balance random exploration, the use of a
guidance policy, and the use of the current policy.

For the persistent agent scenario, there are three
action selection options available: random exploration,
the use of retained advice from the trainer, or the best
action currently known. PPR assigns each of the three
options a probability and priority of selection [41]. Over
time, the probability of using guidance or retained in-
formation decreases, and trust in the agents own policy
increases. Using PPR, the guidance provided by the
trainer is used for more than a single time step, with
a decreasing probability over time, until the value of
the advice is captured by the agent’s own policy. Once
encapsulated by the agent, self-guided exploration and
exploitation of the environment continue.

3.2 Rule-based Interaction

Following, we supply details about the rule-based in-
teractive agent implemented. As in the previous case,
issues of conflicting and incorrect advice need to be miti-
gated. Therefore, a method for managing and correcting
retained information is required. In this regard, ripple-
down rules (RDR) offer a methodology for iteratively
building knowledge-based systems without the need for
engineering skills.

While current IntRL agents accept advice pertaining
to the current state only, ripple-down rule reinforcement
learning (RDR-RL) accepts rule-based advice that can
apply to multiple states. Each interaction contains a
recommendation or evaluation from the user and the
conditions for its application. For example, the user
may provide the following rule to an agent learning to
drive a car: “IF obstacle on left==TRUE THEN ac-
tion=turn right”. In this example, the advice is to turn
right, and the condition for its use is that there is an ob-
stacle on the left-hand side of the car. While rule-based
IntRL assumes that all interactions contain a rule, this
rule does not have to be sourced directly from the user.
The method in which the user interacts with the agent
can be by any means, as long as the advice collected re-
sults in a set of conditions and the recommendation. The
user may provide the set of conditions for the applicabil-
ity of the advice directly, or optionally, the conditions
may be discovered using assistive technologies such as
case-based reasoning or speech-to-text.

An RDR-RL agent has three aspects to be considered
during its construction, each of which is described in the
following sections. These aspects are advice gathering,
advice modelling, and advice utility.

Persistent Rule-based Interactive Reinforcement Learning 5

3.2.1 Advice Gathering

The RDR-RL agent has the same foundation as any RL
agent. The ability to retain and use the advice provided
by the user is an addition to the RL agent, built around
the existing algorithm. Like existing IntRL agents, when
no advice has been provided to the agent, it will operate
to the exact same as a standard RL agent.

For instance, at any point during the agent’s learning,
a user may assist the agent by recommending an action
to take. When the user begins an interaction, they are
provided with the agent’s current state, and if available,
the current intended action. If the user agrees with the
intended action the agent presented, or if the user is
no longer available, the agent continues learning on its
own.

If the user disagrees with the action the agent is
proposing, or if there is no action proposed, then the
interaction continues. The user is provided with a corner-
stone case. The cornerstone case is the state in which the
user recommended the action that the agent is intending
to take. The differences between the cornerstone case
and the current state are presented to the user. If there
is no cornerstone case, for example, when it is the first
time the user is providing advice to the agent, then only
the current state is provided. The user recommends an
action for the agent to take and creates a rule that dis-
tinguishes the two cases, setting the conditions for their
recommended action. Once the recommended action has
been provided, and the rule setting the conditions for
its use determined, they are passed to the agent. The
agent then uses the rule and recommendation to update
its model of advice.

3.2.2 Advice Modelling

Advice modelling is the process of storing the informa-
tion received from the user. The agent receives a rule
and a recommendation from the user each time an in-
teraction occurs. The rule dictates the conditions that
must be met for the recommendation to be provided to
the agent.

For instance, using persistence for state-based In-
tRL may maintain a lookup table for each state and
the corresponding recommendation/evaluation that had
been provided. As we will describe along with the exper-
imental results, this simple method for advice modelling
improves performance compared to agents that do not
retain advice. However, this lookup model does not gen-
eralise advice across multiple states and may present
difficulties with incorrect advice.

For rule-based advice, a ripple-down rules decision
tree is used to model the advice provided by the user.
This system allows a model of advice to be iteratively
built over time, as the user provides more information
to the agent. The RDR model is part of the learning
agent but is independent of the Q-value policy. It is used
to assist in action selection.

When an interaction with the user occurs, the agent
is provided with an action recommendation, and a rule

governing its use. To update the model of advice, the
agent provides the current state as a case to the RDR
system. The system returns a classification node and
an insertion node. The classification node contains the
recommended action based on the advice collected prior
to the current state; the recommendation that the user
disagrees with given the current state. The insertion
node is the last node in the branch of the RDR tree that
evaluated the current state and is the point at which
the new rule will be inserted. A new node is created
using the rule and recommendation from the user, along
with the current state as the cornerstone case. If the
rule in the insertion node is evaluated TRUE using the
information in the current state, then the new node
will be inserted as a TRUE child, otherwise, it will be
inserted as a FALSE child.

3.2.3 Advice Utility

The last aspect of the agent’s construction details when
the advice gathered from the user is used by the agent.
In the previous section, the concept of persistence was
discussed. There, it was identified as an issue the decreas-
ing agent performance if incorrect advice was provided,
or recommended actions were always followed and ne-
glecting exploration. To mitigate this issue, PPR was
proposed.

For the RDR-RL agent, the guidance policy is the
model of advice. The trade-off between exploration and
the exploitation of the learned expected-rewards policy
continues to be managed by whichever action selection
method is preferred by the agent designer. For instance,
an ε-greedy action selection method is used for the
experiments in this work. In this regard, PPR manages
to switch between the action recommended by the advice
model and the ε-greedy action selection method.

At each time step, the advising user has a chance
to interact with the agent. If an interaction occurs, the
model is updated. When a user first recommends an
action, it is expected that the agent will perform it.
For this reason, the recommended action is always per-
formed on the time step at which it was recommended,
regardless of the probabilities currently set by PPR.

When an agent is selecting an action in a time step
where the user has not recommended a previous action,
then PPR is used. First, the agent’s model of advice
is checked to see if any advice pertains to the current
state. If the model recommends an action, then that
action is taken with a probability determined by the
PPR selection policy. If no action is recommended, then
the agent’s default action selection policy is used, e.g.,
ε-greedy.

4 Experimental Environments

4.1 Mountain Car

The mountain car is a control problem in which a car
is located in a unidimensional track between two steep

6 A. Bignold et al.

hills. This environment is a well-know benchmark in RL
community, therefore, it is a good candidate to initially
test our proposed approach.

The car starts at a random position to the bottom
of the valley (−0.6 < x < 0.4) with no velocity (v = 0).
The aim is to reach the top of the right hill. However, the
car engine does not have enough power to claim to the
top directly and, therefore, needs to build momentum
moving toward the left hill first.

An RL agent controlling the car movements observes
two state variables, namely, the position x and the
velocity v. The position x varies between -1.2 and 0.6
in the x-axis and the velocity v between -0.07 and 0.07.
The agent can take three different actions: accelerate
the car to the left, accelerate the car to the right, and
do nothing.

The agent receives a negative reward of r = −1 each
time step, while no reward is given if a hill is reached
(r = 0). The learning episode finishes in case the top of
the right hill is climbed (x = 0.6) or after 1,000 iterations
in which case the episode is forcibly terminated.

4.2 Self-driving Car

The self-driving car environment is a control problem
in which a simulated car, controlled by the agent, must
navigate an environment while avoiding collisions and
maximising speed. The car has collision sensors posi-
tioned around it which can detect if an obstacle is in
that position, but not the distance to that position. Ad-
ditionally, the car can observe its current velocity. All
observations made by the agent come from its reference
point, this includes the obstacles (e.g., there is an obsta-
cle on my left) and the car’s current speed. The agent
cannot observe its position in the environment.

Each step, the environment provides the agent re-
ward equal to its current velocity. A penalty of -100
is awarded each time that the agent collides with an
obstacle. Along with the penalty reward, the agent’s po-
sition resets to a safe position within the map, velocity
resets to the lower limit, and the direction of travel is
set to face the direction with the longest distance to an
obstacle.

Figure 2a shows the map used for the self-driving
car experiments. This map challenges the agent to learn
a behaviour that maximises velocity while avoiding col-
lisions by using a layout that prohibits turning at high
speeds at the narrow corridors on the top, right, and
bottom of the map. The only two sections of the map
that allow for high-velocity turning are the large empty
sections on the left side.

The collision sensors return a Boolean response as to
whether there is an obstacle at that position, though not
the distance to that obstacle. Additionally, the agent
does not know the position of its sensors in reference
to itself. The only information the agent has regarding
the sensors is whether each is currently colliding with
an obstacle. As stated, the agent also knows its current
velocity. The possible velocity of the agent is capped at

(a) Simulated self-driving car. (b) Optimal path.

Fig. 2: A graphical representation of the simulated self-
driving car. The blue square at the top left is the car. A
yellow line within the car indicates the current direction
and the number below (in yellow) is the current velocity.
The small green squares surrounding the car are colli-
sion sensors and will always align with the cars current
direction. The large white rectangles are obstacles.

1m/s at the lower end, and 5m/s at the higher end. A
lower cap above zero velocity prevents the agent from
moving in reverse or standing still. This lower limit
reduces the state space and prevents an unintended
solution, e.g., standing still is an excellent method for
avoiding collisions. The upper limit of 5m/s is set so that
velocity is not limitless and further reduces the state
space, while still being high enough that it exceeds the
limit for a safe turn anywhere in the environment. An
action that attempts to exceed the velocity thresholds
set by the environment will return the respective limit.
There are five possible actions for the agent to take
within the self-driving car environment. These actions
are:

i. Accelerate: the car increases its velocity by 0.5 meters
per second.

ii. Decelerate: the car’s velocity will decrease by 0.5
meters per second.

iii. Turn left : the car alters its direction of travel by 5
degrees to the left.

iv. Turn right : the car alters its direction of travel by 5
degrees to the right.

v. Do nothing : the car’s velocity or direction of travel
is not altered. When performing this action the only
change is the car’s position, based on current velocity,
position, and direction of travel.

The self-driving car environment has nine state fea-
tures, one for each of the collision sensors on the car, and
the current velocity of the car. The collision sensor state
features are Boolean, representing whether they detect
an obstacle at their position. The velocity of the agent
has nine possible values, the upper and lower limits,
plus every increment of 0.5 value in between. With the
inclusion of the five possible actions, this environment
has 11520 state-action pairs.

The reward function defined by the environment
promotes the agent to learn a behaviour that avoids

Persistent Rule-based Interactive Reinforcement Learning 7

obstacles while attempting to achieve the highest veloc-
ity the environment allows. The most natural solution
to learn that achieves these conditions is to drive in
a circle, assuming that the path of the circle does not
intersect with an obstacle. The map chosen for use in
these experiments allows an unobstructed circle path
to be found, but only at low velocities. If the agent is
to meet both conditions that achieve the highest re-
ward, a more complex behaviour must be learned (see
Figure 2b).

5 Experimental Methodology

To compare agent performance and interaction, met-
rics for agent steps, agent reward, and interactions are
recorded. A number of different agents and simulated
users have been designed and applied to the mountain
car and self-driving car environments. Simulated users
have been chosen over actual human trials, as they allow
rapid and controlled experiments [42]. When employ-
ing simulated users, interaction characteristics such as
knowledge level, accuracy, and availability can be set to
specific and measurable levels. Following, we describe
all the agents used during the experiments.

5.1 Non-Persistent and Persistent State-based Agents

Next, we demonstrate the use of persistent advice with
probabilistic policy reuse (PPR), and the impact its
use has on agent performance and user reliance. The
experiments have been designed to test several levels
of human advice accuracy and availability, with and
without retention of received advice.

The mountain car environment is used in these ex-
periments since it is a common benchmark problem in
RL with sufficient complexity to effectively test agents
and simple enough for human observers to intuitively
calculate the correct policy. Additionally, the mountain
car environment has been previously used in a human
trial evaluating different advice delivery styles [3] and
with simulated user [42]. We use the results reported in
the human trial to set a realistic level of interaction for
evaluative and informative advice agents. Five agents
have been designed for the following experiments. The
expected-reward values have been initialized to zero,
an optimistic value for the environment. All the agents
are given a learning rate α = 0.25, a discounting factor
γ = 0.9, and use an ε-greedy action selection strategy
with ε = 0.1. For the agent to represent the continuous
two-dimensional state space of the environment, it has
been discretized into 20 bins for each state feature, cre-
ating a total of 400 states, each with three actions. The
learning agents are listed below:

i. Unassisted Q-Learning Agent : A Q-learning agent
used for capturing a baseline for performance on the
mountain car environment. This agent is unassisted,
receiving no guidance or evaluation from the trainer
and used as a benchmark.

IF recommendation
received

IF agent advice model
has recommendation

Agent advice model
updated

Agent takes ε-greedy
action

Agent takes
recommended action

FALSE

TRUE
80%*

TRUEFALSE

Fig. 3: Probabilistic policy reuse (PPR) for an IntRL
agent using informative advice. If the user recommends
an action on the current time step then the agent’s
advice model updates and the action is performed. If
the user does not provide advice on the current time step,
then the agent will follow previously obtained advice
80% of the time (*decays over time) and its default
exploration policy the remaining time.

ii. Non-Persistent Evaluative Advice Agent : This agent
is assisted by a user. The user may provide an ad-
ditional reward at each time step to evaluate the
agent’s last choice of action. For this non-persistent
agent, the supplemental reward is used in the current
learning step and then discarded.

iii. Persistent Evaluative Advice Agent : This agent is as-
sisted by a user. The user may provide an additional
reward at each time step to evaluate the agent’s last
choice of action. For this persistent agent, the evalu-
ation provided is retained, and upon performing the
same state-action pair in the future, the evaluation
may be automatically provided to the agent, with
a probability defined by the PPR action selection
policy.

iv. Non-Persistent Informative Advice Agent : This agent
is assisted by a user. The user may recommend an
action for the agent to perform for the current time
step. When the agent is recommended an action,
that action is taken on that time step, and then
the advice is discarded. This non-persistent agent,
when visiting the same state again in the future, will
not recall the recommended action and will perform
ε-greedy action selection.

v. Persistent Informative Advice Agent : This agent is
assisted by a user. The user may recommend an
action each time step for the agent to perform. If
recommended, the learning agent will take the advice
on that time step and retain the recommendation
for use when it visits the same state in the future.
When the agent visits a state in which it was pre-
viously recommended, it will take that action with
the probability defined by the PPR action selection
policy.

The agents adopting a persistent model are employ-
ing PPR for action selection. As depicted in Figure 3,
the PPR action selection begins with an 80% chance
of reusing advice provided to the agent in the past.
The probability of reusing advice decreases by 5% each

8 A. Bignold et al.

episode. For the remaining 20% of the time, or if no ad-
vice has been provided for the current state, an ε-greedy
action selection policy is used.

For each agent, one hundred experiments are run.
At the beginning of each experiment, the environment,
the agent, and the agent’s model of provided advice
are reset. Each experiment runs with a maximum of
one thousand steps before it terminates. The number
of steps performed, interactions performed, and reward
received are recorded. An interaction is recorded if the
user provides advice to the agent, not when the agent
uses advice it has stored from a previous interaction.

Six different simulated users have been created as
trainers. Three providing evaluative advice and three
informative advice. Evaluative advice-giving users pro-
vide either a positive or negative supplemental reward
corresponding to the agent’s choice in action on the
last time step. Informative advice-giving users provide
a recommended action for the agent to perform on the
current time step. Simulated users that are advising a
persistent agent will not provide advice for a state, or
state-action, that it has previously advised on, as it is
assumed that if the agent is retaining information it
should not need repeated advice for the same conditions.
This does not apply to non-persistent agents.

Additionally, each simulated user will have either
optimistic, realistic, or pessimistic values for advice
accuracy and availability. Accuracy is a measure of how
correct the advice is provided by the user. Accuracy of
interaction is altered by, with a specified probability,
replacing the recommended action with an action that
is not optimal for the current state. Availability is a
measure of how frequently the user provides advice. The
availability of the simulated user is altered by specifying
a probability that the user will interact with the agent
on any given time step.

Optimistic simulated users have 100% accurate ad-
vice and will provide advice on every time step that the
agent does not have retained knowledge of. Realistic
simulated users have accuracy and availability modelled
from previously obtained results in a human trial [3].
The recorded accuracy and availability of human advice-
givers differs depending on the type of advice being pro-
vided, i.e., evaluative or informative. Previous work has
compared evaluative and informative advice/agents [3],
and as such is not in the scope of this study. Lastly,
pessimistic simulated users are given accuracy and avail-
ability values half that of the realistic users. Table 1
shows the accuracy and availability values for each of
the six simulated users (3 evaluative users, 3 informative
users). The previously observed accuracy and availabil-
ity for human advisors in the mountain car environment
are shown as for realistic agents.

Table 2 lists all the agent/simulated user combi-
nations tested. There are a total of thirteen agents,
six persistent agents, six non-persistent agents, and an
unassisted Q-Learning agent used for benchmarking. In-
cluded next to each agent/user combination is a short
name. This short name is used later in the Results sec-

Table 1: Simulated users modelled for the experimental
setup. Accuracy and availability are set using previous
results obtained in a human trial as reference [3].

Name Accuracy Availability
Evaluative Optimistic 100% 100%
Evaluative Realistic 48.470% 26.860%
Evaluative Pessimistic 24.235% 13.43%
Informative Optimistic 100% 100%
Informative Realistic 94.870% 47.316%
Informative Pessimistic 47.435% 23.658%

Table 2: Agent/User combinations for persistent agent
testing, including short names for reference.

Short
Name

Agent Simulated User

UQL Unassisted Q-Learning NONE
NPE-O Non-Persistent Eval. EVAL. OPTIMISTIC
NPE-R Non-Persistent Eval. EVAL. REALISTIC
NPE-P Non-Persistent Eval. EVAL. PESSIMISTIC
NPI-O Non-Persistent Info. INFO. OPTIMISTIC
NPI-R Non-Persistent Info. INFO. REALISTIC
NPI-P Non-Persistent Info. INFO. PESSIMISTIC
PE-O Persistent Evaluative EVAL. OPTIMISTIC
PE-R Persistent Evaluative EVAL. REALISTIC
PE-P Persistent Evaluative EVAL. PESSIMISTIC
PI-O Persistent Informative INFO. OPTIMISTIC
PI-R Persistent Informative INFO. REALISTIC
PI-P Persistent Informative INFO. PESSIMISTIC

tion, as the full name is too long to include in each figure
legend.

5.2 Rule-based Agents

In this case, three learning agents have been designed,
which include unassisted Q-Learning, persistent state-
based informative, and rule-based assisted using ripple-
down rules. No evaluative assisted agents are tested in
these experiments, as they cannot be suitably compared
to the rule-assisted agent which is using informative
advice. The three learning agents used are described
below:

i. Unassisted Q-Learning Agent : A Q-learning agent
used for capturing a baseline for performance on
each environment. This agent is unassisted, receiv-
ing no guidance or evaluation from the trainer and
used as a benchmark. The agent will represent each
environment as described in the previous section.
The expected-reward values have been initialized to
zero. This agent uses ε-greedy action selection.

ii. State-based Persistent Agent : This agent is assisted
by a user. The user may recommend an action each
time step for the agent to perform. If an action is
recommended by the user, the agent will take it on
that time step and retain the recommendation for
use when it visits the same state in the future. When
the agent visits a state in which it was previously

Persistent Rule-based Interactive Reinforcement Learning 9

recommended, it will take that action with the prob-
ability defined by the PPR action selection strategy.
The persistent informative agent uses the same pa-
rameter settings as the unassisted Q-Learning agent
for each environment.

iii. Rule-Assisted Persistent Agent : This agent is as-
sisted by a user. The user may provide a rule and
recommended action at each time step. The rule-
assisted learning agent uses ripple-down rules to
model the advice received by the trainer. If the user
provides advice, and the rule provided equates to
true for the current state, then the agent will take
the recommended action during that time step. If
the provided rule equates to false, then the agent
will use its default action selection strategy. When
a rule is provided the agent will retain the rule for
use in future states. Each time the agent visits a
state, it will query its retained model of rules. If a
rule is found that equates to true for the current
state, then that action is taken with a probability
defined by the agent’s PPR action selection strat-
egy. All rule-assisted agents used in this experiment
begin with an 80% chance of taking the action rec-
ommended by its advice model. This 80% chance is
decayed each episode, until the point at which the
agent is relying solely on its secondary action selec-
tion strategy. The agent’s secondary action selection
strategy is the same strategy used by the unassisted
Q-Learning agent, i.e., ε-greedy. The rule-assisted
agent uses the same parameter settings as the unas-
sisted Q-Learning agent for each environment.

The mountain car environment is a good candidate
for the rule-based advice method as the optimal so-
lution can be captured in very few rules, while still
remaining understandable by humans. The rule-based
and state-based agents are tested against the mountain
car environment, employing simulated users with vary-
ing levels of knowledge of the environment. The aim
is to compare the performance of the agents, and the
number of interactions performed to achieve that per-
formance. The learning parameters used are the same
as the previous experiments.

Additionally, in these experiments, the self-driving
car environment is also used. The state and action spaces
for this environment is larger than the mountain car
environment, but still remain understandable by human
observers. The self-driving car agents are given a learning
rate α = 0.1, a discounting factor γ = 0.999, and used
an ε-greedy action selection strategy with ε = 0.01.

The requirements of the reward function, to avoid
collisions and to maximise velocity, make the creation of
optimal rules much more difficult. For the self-driving
car environment, it is easy to provide rules that will
help achieve greater performance in parts of the environ-
ment, maximising speed or when to turn for example.
However, it is much more difficult to provide rules that
meet both requirements optimally, for example, when to
turn the car and by how much to maintain the highest
possible velocity while not crashing. The characteristic
of being able to easily creating performance improving

Table 3: State-based simulated user knowledge bases for
the mountain car and the self-driving car environments.

Environment
(User Name)

Limits

Mountain Car /
MC-FULL

User will provide advice for all states.

Mountain Car /
MC-HALF

User will only provide advice for state
in which the agent is on the left slope
of the valley. (IF position < -0.53)

Mountain Car /
MC-QUARTER

User will only provide advice for state in
which the agent is on the bottom half of
the left slope of the valley. (IF position
< -0.53 AND position > -0.865)

Mountain Car /
MC-MIDDLE

User will only provide advice for the few
states at the bottom of the valley. (IF
position < -0.43 AND position > -0.63)

Self-driving Car
/ SC-AVOID

User will only provide advice for states
where the agent has an obstacle on the
left side OR the right side, but not both.
(IF right = true OR right-front-close =
true) OR (IF left = true OR left-front-
close = true)

yet non-optimal rules is what makes the self-driving car
environment an interesting benchmark for the rule-based
advice method. The difference between this environment
and the mountain car is that this environment will test
a larger state and feature space, and consist of advice
that, while beneficial, is not optimal.

5.3 Simulated Users

To allow quick, bias-reduced, repeatable testing of the
agents, simulated users are used as trainers in place of
humans. Simulated users offer a method for performing
indicative evaluations of RL agents that require human
input, with controlled parameters [42]. There are two
types of simulated users required for the following ex-
periments, one must provide state-based advice, and
the other must provide rule-based advice. Both types of
simulated users will provide the same information and
the same amount of it.

The first type, an informative state-based advice
user, is the same user employed for the previous experi-
ments. This user may provide a recommended action on
each time step. The agent that the user is assisting will
retain any recommendations provided by the user, and
will not give the user an opportunity to provide advice
for a state for which advice has already been received,
capping the number of interactions at the number of
states. As in the previous experiments, each informative
state-based user had an accuracy and availability score.
Accuracy is the probability that the advice the user is
providing is optimal for the current state. Availability
is the probability that the user would provide advice
for any given opportunity. Additionally, the states that
the user can provide advice will be limited to parts of
the environment, simulating a limited or incomplete
knowledge level of the environment. Table 3 shows the
knowledge limitations of the various state-based users

10 A. Bignold et al.

built for the rule-based experiments in order to do a fair
comparison.

The advice that the state-based simulated users pro-
vide for the mountain car environment is optimal (pre-
vious to accuracy, availability, and knowledge level is
applied). However, the same may not be true for the self-
driving car environment. The reward function for this
environment reinforces behaviour that avoids collisions
and maximises speed. The advice that the simulated
user provides for the self-driving car environment only
attempts to avoid collisions. While this advice should
be optimal, there may be situations where the agent
will want to stay close to an obstacle to maximising
speed. In these situations, the advice provided would be
considered incorrect, and the agent will need to learn
to ignore it to learn the optimal behaviour.

The second type of simulated user is a rule-based
advice user. Simulated users are a common methodol-
ogy for the creation and evaluation of ripple-down rule
systems in research [33, 43, 44]. These simulated users
will return a rule and a recommended action for each
interaction with the user. The simulated users employed
for the these experiments have been built with their
own ripple-down rules model and populated with a set
of rules that they will, over time, provide to the agent.
As in reality, users do not have their own rule model,
rather they would generate rules themselves, therefore,
we use the rule model for simulated users as a means to
replicate the interaction process of a real user.

The learning agent begins each experiment with an
empty model of advice, and the simulated user begins
with a full model. Over time, the learning agent will
provide the trainer user with an opportunity to provide
advice. When an opportunity occurs, the learning agent
provides the current state observation, the current ac-
tion it will take, and details about how it chose that
action (either from the retained user model or from
an exploration strategy). This information is the same
information that would be made available to an actual
human advisor. Now that the simulated user has this
information, it may choose to respond and what advice
it will provide with. The simulated user will respond if
it has a rule that applies to the current state and it dis-
agrees with the agent’s choice of action. The simulated
user will continue to provide advice for as long as it is
given opportunities, that it has new rules to provide,
and that the new rules disagree with the agent’s cur-
rent behaviour. Algorithm 1 shows the full process flow
to choose an action using rule-based advice to assist
a learning agent. In the algorithm, ct+1 represents the
cornerstone case for state st+1 and action at+1, whereas
lt+1 represents the advice given by the user at state
st+1.

Multiple rule-based simulated users have been cre-
ated to provide a range of different knowledge levels for
the various environments (equivalent to the knowledge
level of state-based simulated users shown in Table 3).
Table 4 describes and provides the knowledge bases in
use for each of the environments. A short description of
each knowledge base is provided.

Algorithm 1 Interactive reinforcement learning with
a rule-based advice model for assisting an RL agent.

1: Initialize environment selecting st
2: for (each episode) do
3: Choose action at from st using π
4: repeat
5: Perform action at
6: Observe next state st+1

7: Choose next action at+1 from st+1

8: Pass st+1, at+1, ct+1 to user
9: if (adding advice) then

10: Observe advice lt+1 from st+1

11: if (lt+1 6= at+1) then
12: Create new rule using ct+1

13: Update advice model
14: Change action at+1

15: end if
16: else
17: User ignores agent
18: end if
19: if rand(0, 1) < ε then
20: Choose any random action at+1 from A
21: end if
22: Update Q-values
23: st ← st+1; at ← at+1

24: until s is terminal
25: end for

Table 4: Rule-based simulated user knowledge bases
for the mountain car and self-driving car environments.
The model is shown using ripple-down rules with a text
representation.

Environment
/ User Name

Limits

Mountain Car /

MC-FULL

IF 1==1 : EXPLORE
IF velocity > 0: GO RIGHT

NO TRUE NODE
IF velocity <=0 GO LEFT

Mountain Car /

MC-HALF

IF 1==1 : EXPLORE
IF position < -0.53: GO RIGHT

IF velocity >= 0: GO RIGHT
IF velocity < 0: GO LEFT

NO FALSE NODE

Mountain Car /

MC-QUARTER

IF 1==1 : EXPLORE
IF position < -0.53 AND

position > -0.86: GO RIGHT
IF velocity >= 0: GO RIGHT
IF velocity < 0: GO LEFT

NO FALSE NODE

Mountain Car /

MC-MIDDLE

IF 1==1 : EXPLORE
IF position < -0.43 AND

position > -0.63: GO RIGHT
IF velocity >= 0: GO RIGHT
IF velocity < 0: GO LEFT

NO FALSE NODE

Self-driving Car

/ SC-AVOID

IF 1==1 : EXPLORE
IF right OR right-front-close:

TURN LEFT
NO TRUE NODE
IF left OR left-front-close:
TURN RIGHT

NO FALSE NODE

Persistent Rule-based Interactive Reinforcement Learning 11

UQL
PI-R (No PPR)
PI-R (PPR)

Episodes

St
ep
s

1,000

750

500

250

0
0 100 200 300 400 500

Fig. 4: Probabilistic policy reuse and direct-use action
selection for IntRL using retained informative advice.
Both assisted agents are using simulated users using
realistic values for accuracy and availability, and are
both retaining advice provided to them.

6 Results

6.1 Probabilistic Policy Reuse

The first experiment performed tests the use of proba-
bilistic policy reuse (PPR) as an action selection method,
compared to always using advice when available within
the mountain car environment. As aforementioned, the
use of persistence in RL introduces a critical flaw. Specif-
ically, if provided advice is retained and reused, and
that advice is incorrect, then the agent will not be able
to learn a solution to the current problem. Figure 4
shows the performance of 3 RL agents: an unassisted
Q-learning (UQL) agent for benchmarking and 2 persis-
tent IntRL agents using informative advice. These two
interactive agents are identical except that one is using
PPR for action selection, called persistent informative
reuse (PPR) agent or PI-R (PPR), while the other will
always take a recommended action if one exists for the
current state, called persistent informative reuse (No-
PPR) agent or PI-R (No-PPR). Both interactive agents
are assisted by a simulated user created with realistic
values of accuracy and availability.

Figure 4 shows that both assisted agents immedi-
ately outperforms an unassisted agent (UQL in blue).
Both agents are retaining the recommended actions from
the user, and cannot differentiate between correct and
incorrect advice. The No-PPR agent (in red) will always
take the recommended action for the current state, if
available. This works well for the first few episodes, as
small amounts of correct advice can have a large posi-
tive impact on agent performance and small amounts
of incorrect can be ignored because of the momentum
the agent builds in the mountain car environment. How-
ever, as the amount of incorrect recommended actions
retained increases, the effect on the agent’s performance
increases. Eventually, the impact of taking the wrong
action will have such an effect that the agent cannot
build the required momentum to solve the task. Without
the required momentum, the agent will get stuck in local
minima.

The agent using probabilistic policy reuse (PPR) con-
tinues to outperform both the unassisted agent (UQL),
and the other assisted agent (PI-R No-PPR). The PPR

agent will initially take the users advice in high regard,
taking recommended actions 80% of the time. Over time,
the agent pays less attention to the retained advice of
the user, and more to its own learned policy. This allows
the agent to disregard incorrect advice, as its own value
estimations will show the correct action to take, while
correct advice will accelerate the discovery of the true
value estimation of the correct action in advised states.

If human-sourced advice is 100% accurate for the
problem being tested, the use of PPR may lower the
potential performance of the agent. This is due to the
PPR action selection policy disregarding accurate infor-
mation and instead taking exploratory or local minima
actions. However, previous work [3] has shown that
human-sourced information is not likely to be 100%
correct, and as such, the use of PPR mitigates the risk
of inaccurate information.

6.2 State-based Persistent Advice

The second experiment tests non-persistent advice and
state-based persistent advice, i.e., the provided advice
is used and retain with PPR only in the given state. An
unassisted Q-learning (UQL) agent is used for bench-
marking. Simulated users are used for providing advice
in the mountain car environment with three different
initialisation, namely, optimistically, realistic, and pes-
simistically (denoted with the suffix -O, -R, and -P
respectively). Figures 5a and 5c show the performance
over time for both non-persistent evaluative and infor-
mative agents, at varying levels of user accuracy and
availability. These figures do not compare the two ad-
vice delivery styles against each other (i.e., evaluative
and informative), but they are compared against their
persistent counterparts. As evaluative advice is eval-
uating actions that have already been taken, there is
a short delay between the action being taken and the
application of the advice to the agent. This delay causes
latency in the effect of the advice on the agent’s learned
policy. Figure 5a shows this delay for the evaluative
agent, where most of the advice is given in the first few
episodes, but it takes around twenty episodes before the
agent has fully utilised the advice and converges to an
optimal path. The agent using informative advice on
the other hand does not suffer from this delay (shown
in Figure 5c). This agent is receiving recommendations
on which action to take next, and if a recommendation
is provided, then the action is taken.

Figures 5a and 5b show evaluative agents, both non-
persistent (NPE-*) and persistent (PE-*), using advice
from three different users. The persistent agent (shown
in 5b) is using PPR to manage the trade-off between the
advice received from the user, its own learned policy, and
its exploration strategy. The persistent agent is limited
to only receiving one interaction from the user per state-
action pair. If the agent has already received some advice
for the state-action pair in question, then the user is
not given the opportunity to provide additional advice.
The agent instead relies on the stored advice from the

12 A. Bignold et al.

UQL
NPE-O
NPE-P
NPE-R

Episodes

St
ep
s

1,000

750

500

250

0
0 100 200 300 400 500

(a) Non-persistent evaluative

UQL
PE-O
PE-P
PE-R

Episodes

St
ep
s

1,000

750

500

250

0
0 100 200 300 400 500

(b) Persistent evaluative

UQL
NPI-O
NPI-P
NPI-R

Episodes

St
ep
s

1,000

750

500

250

0
0 100 200 300 400 500

(c) Non-persistent informative

UQL
PI-O
PI-P
PI-R

Episodes

St
ep
s

1,000

750

500

250

0
0 100 200 300 400 500

(d) Persistent informative

Fig. 5: Steps per episode for 4 different agents using
advice. The agents are assisted by three different simu-
lated users, initialised with either Optimistic, Realistic,
or Pessimistic values for accuracy and availability. The
figure shows that the persistent agents learn in fewer
steps in comparison to the non-persistent agents when
assisted by sufficiently accurate users.

first interaction regardless of its accuracy. Both agents
will always utilise advice received directly from the user
on the current time step. However, the persistent agent
keeps it and follow a PPR strategy, which allows the
agent to diminish the probability of using the advice for a
state-action pair over time. This results in the persistent
agent receiving one interaction per state-action pair,
maximising the utility that interaction, then eventually
only relying on its own policy.

The agents being assisted by optimistically initialised
users perform almost the same. The optimistically-assisted
persistent agent (PE-O) takes slightly longer to learn
than the non-persistent counterpart (NPE-O), because
the advice it receives is only listened to 80% (dimin-
ishing over time) after the initial interaction with the
user, compared to the non-persistent agent whose user
will continually interact with the agent and the agent
will always follow the advice. The agents being assisted
by realistically initialised users differ greatly in per-
formance. The non-persistent evaluative agent using a
realistically initialised user (NPE-R), while able to solve
the mountain car problem in fewer steps than the 1000
cut-off limit, was not able to find the optimal solution.
However, the persistent evaluative agent (PE-R) was not
only able to solve the problem, but also learned the solu-
tion faster than the benchmark unassisted agent (UQL),
just like the NPE-O and PE-O agents. The difference in
performance is not only due to the persistent agent re-
membering the advice, but also because it can eventually
disregard incorrect advice as the likelihood that the PPR
algorithm will choose to take the recommended action
diminishes over time, while the agent’s value estimation

of the recommended action remains the same. What
is particularly notable from these results is that the
persistent agent (PE-R), still outperformed unassisted
Q-learning despite more than half of all interactions
giving the incorrect advice. Regardless of whether the
agent is persistent or not, neither agent that was advised
by a pessimistically-initialised user (NPE-P, PE-P) was
able to solve the mountain car problem. This is likely
due to the accuracy of the pessimistic user being less
than 25%.

Figures 5c and 5d show the performance of informa-
tive agents, both non-persistent (NPI-*) and persistent
(PI-*), using advice from three users with different levels
of advice accuracy and availability. These agents can
receive informative advice from a user. The advice that
they receive is an action recommendation, informing
them of which action to take in the current state. When
either agent, persistent or non-persistent, receives an
action recommendation directly from the user on the
current time step that action will be taken by the agent.
The persistent agent will remember that action for the
state it was received in, and use the PPR algorithm
to continue to take that action in the future. Once the
persistent agent has received an action recommendation
from the user for a particular state, the user will not
interact with the agent for that state in the future.

The informative agents (NPI-O, PI-O), regardless of
persistence, learned the solution in the same amount of
time when being advised by an optimistically initialised
user. This is not surprising as the agent is receiving
100% accurate advice for every time step, making this
essentially a supervised learning task at a great effort
of the user. A difference in the time required to find a
solution can be seen in the agents that are assisted by a
realistically initialised agent (NPI-R, PI-R). While the
non-persistent agent (NPI-R) agent does learn faster
than an unassisted agent (UQL), the persistent agent
learns the solution almost immediately, much like the
optimistically-assisted persistent agent (PI-O). This dif-
ference in learning speed is likely due to the agent re-
taining and reusing advice. The NPI-R and PI-R agents
are being assisted by a simulated user with realistic
values for accuracy and availability. The realistic sim-
ulated user has a ∼48% chance of interacting with an
agent on any particular time step. The non-persistent
agent does not retain advice from the user, so it will
always have a ∼48% chance of receiving advice for any
particular state. However, the persistent agent will re-
tain and reuse advice with an 80% (diminishing over
time from PPR) probability for any state that it has
received advice on in the past. As long as the retained
advice is sufficiently accurate, the persistent agent will
learn faster because it utilises that advice more often.
The last two agents are assisted by a pessimistically ini-
tialised user. The non-persistent agent outperformed the
persistent agent in this experiment. This is due to the
same principle as the realistically-assisted informative
agents. The pessimistically-assisted agent performed the
recommended action more often than the non-persistent
agent. Both agents have a 23.6% chance of receiving

Persistent Rule-based Interactive Reinforcement Learning 13

advice from the pessimistic user, however, the persistent
agent retains and reuses this advice, and will take the
recommended action 80% of the time for states it has
been advised on. This results in the PI-R agent taking
the advised incorrect action far more often than the
NPI-R agent.

Table 5 shows the number and percentage of inter-
actions that occurred on average for each agent/user
combination. However, the number of interactions is not
suitable to compare agents, as agents that benefit from
advice may take fewer steps, giving the users fewer op-
portunities to provide advice, despite perhaps requiring
more attention from the user per episode. Therefore, the
percentage of interaction is more suitable for comparing
agents against each other, as it is a function of the inter-
action requirements, rather than a direct measurement
of the number of interactions. For non-persistent agents,
this interaction percentage is equal to the advising user
availability. For persistent agents, this percentage varies
due to the use of the PPR approach.

It is clear from Table 5 that persistent agents require
substantially fewer interactions than non-persistent agents.
These results show that the number of interactions re-
quired by the user to achieve each agent’s recorded
performance is significantly reduced when advice is re-
tained. All persistent agents measured less than 1% of
steps with direct user interaction. Assuming a direct
correlation between the number of interactions and the
time required to perform those interactions, the use of
persistence offers a large time reduction for assisting
users. This significant drop in required interactions, cou-
pled with the previous observation of large performance
gains shown by the majority of persistent agents, makes
a compelling case for the retention and reuse of advice,
assuming a suitable level of accuracy of that advice.

For non-persistent agents, an observation can be
made that as the availability of the simulated user de-
creases, the number of interactions increases. In this
case, simulated users that are highly accurate allow the
agent to learn the optimal policy faster, which results
in the agent taking fewer steps, and the simulated user
having fewer opportunities to interact. Simulated users
with lower accuracy, such as the pessimistic users, cause
the agent to take longer to learn the policy, resulting in
the agent taking more steps, and allowing the simulated
user more opportunities to provide advice. This is what
creates the inverse correlation between the user advice
availability and the number of interactions recorded in
non-persistent agents. The same situation is not ob-
served for persistent agents. This is due to the use of the
PPR approach, which leads to similar opportunities to
provide advice in all the cases. For instance, if advice is
given in a state that has previously received, this might
be dismissed by the PPR approach delimiting the total
number of interactions regardless of the accuracy of such
advice.

Episodes

St
ep
s

1,000

750

500

250

0
0 50 100 150 200 250

MC-BENCH
MCP-FULL
MCP-HALF
MCP-MID
MCP-QUAR

(a) State-based agent.

Episodes

St
ep
s

1,000

750

500

250

0
0 50 100 150 200 250

MC-BENCH
MCP-FULL
MCP-HALF
MCP-MID
MCP-QUAR

(b) Rule-based agent.

Fig. 6: Step performance for state-based and rule-based
IntRL agents for the mountain car domain. Using con-
siderable much less interaction from the trainer, results
show no significant difference in performance between
the two types of agents.

6.3 Rule-based Advice

Using a rule-based persistent advice technique, we ex-
pect to reduce even further the number of interactions
needed between the learning agent and the trainer, in
comparison to the state-based persistent advice. In this
regard, we perform experiments using two different do-
mains, namely, the mountain car domain and the self-
driving car domain described in Section 4.

6.3.1 Mountain Car Domain

First, we employ the mountain car domain using both
state-based and rule-based advice. A total of eight dif-
ferent simulated users are created, four are used for
state-based advice and four for rule-based advice. The
agents differ in the level of knowledge and the availabil-
ity to deliver advice, i.e., full, half, quarter, and bottom
availability (as shown in Table 4). Figure 6 shows the
number of steps each agent performed each episode for
this environment. Figure 6a shows the results for the
state-based agents, and Figure 6b shows the rule-based
agents. A comparison of the two graphs shows that the
agents performed similar, regardless of the advice deliv-
ery method. This was expected, as the method in which
the agent uses the advice and the amount of advice in
total that the agent receives does not differ between the
two types of agents. The agents using minimal advice
(MCP-MID and MCRDR-MID) end up learning a worse
behaviour than the unassisted Q-Learning agent. This
is likely an indication that the decay rate for the PPR
action selection method is too low, and that the agent
has not yet learned to ignore the user advice after its
initial benefit and focus on its own learning.

Table 6 shows the number of interactions, and the
percentage of interactions over opportunities for inter-
actions, for each agent. These results show that the
number of interactions is much less for the rule-based
agents compared to the state-based agents, allowing sim-
ilar performance with much less effort from the trainer.
In the previous experiment, the number of interactions
was not a useful measure to compare agents against
each other. This was because the advice provided to the

14 A. Bignold et al.

Table 5: Average number of interactions performed per experiment, and the percentage of interactions compared to
the total steps taken, for each non-persistent and persistent agent/user combination.

Interaction
(% Interactions / Total Steps)

Agent Non-persistent Persistent
Evaluative agent / Optimistic user (NPE-O/PE-O) 58,355 (100.00%) 668 (0.91%)
Evaluative agent / Realistic user (NPE-R/PE-R) 486,503 (26.86%) 117 (0.01%)
Evaluative agent / Pessimistic user (NPE-P/PE-P) 500,499 (13.43%) 47 (<0.01%)
Informative agent / Optimistic user (NPI-O/PI-O) 54,083 (100.00%) 253 (0.46%)
Informative agent / Realistic user (NPI-R/PI-R) 134,590 (47.31%) 255 (0.01%)
Infomative agent / Pessimistic user (NPI-P/PI-P) 193,170 (23.65%) 63 (0.38%)

Table 6: Interaction percentage state- and rule-based
agents for the mountain car domain. Average number
of interactions performed per experiment, and the per-
centage of interactions compared to the steps taken, for
each state-based/rule-based agent/user combination.

Agent / User #Interaction
(%)

State-based / Full (MCP-FULL) 254 (<0.01%)
State-based / Half (MCP-HALF) 227 (<0.01%)
State-based / Quarter (MCP-QUAR) 139 (<0.01%)
State-based / Bottom (MCP-MID) 45 (<0.01%)
Rule-based / Full (MCRDR-FULL) 2 (<0.01%)
Rule-based / Half (MCRDR-HALF) 3 (<0.01%)
Rule-based / Quarter (MCRDR-QUAR) 3 (<0.01%)
Rule-based / Bottom (MCRDR-MID) 3 (<0.01%)

agent affects the number of steps the agent takes, which
results in fewer opportunities for interactions. However,
Figure 6 shows that the performance the agents that
use the same simulated user are the same, regardless of
the advice type. Therefore, in this context, the number
of interactions is a useful measure for comparing the
corresponding state-based and rule-based agents.

6.3.2 Self-driving Car Domain

The aim of the agent in the self-driving car environ-
ment is to avoid collisions and maximise speed. In the
experiments, we created two simulated users to provide
state-based and rule-based advice. Both agents outper-
formed the unassisted Q-Learning agent, both achieving
a higher step count and reward. The obtained steps
and reward are shown in Figure 7a and Figure 7b re-
spectively. Although the agent was forcibly terminated
when it reached 3000 steps, Figure 7a shows that the
agents never reached the 3000 step limit. This is because
the agents are given a random starting position and ve-
locity at the beginning of each episode, some of which
result in scenarios where the agent cannot avoid a crash.
Although both assisted agents outperformed the unas-
sisted agent, between the state-based and rule-based
methods, there is no considerable difference since both
run a similar number of steps and collected a similar
reward.

Benchmark
Rule-based
State-based

Episodes

St
ep
s

3,000

2,000

1,000

0

0 100 200 300 400 500

(a) Steps per episode.

Benchmark
Rule-based
State-based

Episodes

R
ew

ar
d

0

-1,000

-2,000

-3,000
0 100 200 300 400 500

(b) Reward per episode.

Fig. 7: Steps and reward for state-based and rule-based
IntRL agents for the self-driving car domain. The advice
required from the trainer is considerable less obtaining
no significant difference in performance between the two
types of agents.

Table 7: Average number of interactions performed per
experiment and the percentage of interactions com-
pared to the steps taken, for each state-based/rule-based
agent/user combination in the self-driving car domain.

Agent #Interaction (%)
State-based advice agent 232 (<0.01%)
Rule-based advice agent 2 (<0.01%)

Table 7 shows the number of interactions, and the
percentage of interactions compared to the number of
opportunities for interactions (equal to steps), for each
agent. These results show that the number of interac-
tions is much less for the rule-based agents compared
to the state-based agents.

7 Conclusion

In this work, we have introduced the concept of per-
sistence in interactive reinforcement learning. Current

Persistent Rule-based Interactive Reinforcement Learning 15

methods do not allow the agent to retain the advice
provided by assisting users. This may be due to the ef-
fect that incorrect advice has on an agent’s performance.
To mitigate the risk that inaccurate information has on
agent learning, probabilistic policy reuse was employed
to manage the trade-off between following the advice
policy, the learned policy, and an exploration policy.
Probabilistic policy reuse can reduce the impact that
inaccurate advice has on agent learning.

Interactive reinforcement learning agents, both eval-
uative and informative, learned faster when retaining
the information provided by an advising user, when the
advising user’s accuracy is sufficient. Additionally, per-
sistent agents were shown to require significantly fewer
interactions than non-persistent agents, while achieving
the same or better learning speeds when advice accuracy
was sufficient.

Additionally, we have introduced rule-based interac-
tive reinforcement learning, a method for users to assist
agents through the use of rule-structured advice and
retention. Two environments were tested to investigate
the impact that rule-based advice had on performance
and the number of interactions performed to achieve
the measured performance. Compared to state-based
persistent advice for interactive reinforcement learning,
rule-based advice was able to achieve the same level
of performance with substantially fewer interactions
between the agent and the user.

This work did not investigate the time and cognitive
requirements for users to construct state-based and rule-
based advice. It is likely that rule-based advice will
require more time and thought to construct. However,
existing research has shown that decision trees built with
ripple-down rules are easier for users to construct [45,
34, 46]. Future work is required to test if this will justify
the benefits that rules provide over state-based advice,
in terms of the number of interactions.

Conflict of interest. The authors declare that they
have no conflict of interest.

References

1. C. Arzate and T. Igarashi, “A survey on interactive
reinforcement learning: Design principles and open
challenges,” in Proceedings of the 2020 ACM Design-
ing Interactive Systems Conference, pp. 1195–1209,
2020.

2. J. Lin, Z. Ma, R. Gomez, K. Nakamura, B. He,
and G. Li, “A review on interactive reinforcement
learning from human social feedback,” IEEE Access,
vol. 8, pp. 120757–120765, 2020.

3. A. Bignold, F. Cruz, R. Dazeley, P. Vamplew, and
C. Foale, “Human engagement providing evaluative
and informative advice for interactive reinforcement
learning,” arXiv preprint arXiv:2009.09575, 2020.

4. W. B. Knox and P. Stone, “Interactively shap-
ing agents via human reinforcement: The TAMER
framework,” in Proceedings of the Fifth Interna-

tional Conference on Knowledge Capture, pp. 9–16,
ACM, 2009.

5. A. Bignold, F. Cruz, M. E. Taylor, T. Brys,
R. Dazeley, P. Vamplew, and C. Foale, “A con-
ceptual framework for externally-influenced agents:
An assisted reinforcement learning review,” arXiv
preprint arXiv:2007.01544, 2020.

6. S. Griffith, K. Subramanian, J. Scholz, C. Isbell,
and A. L. Thomaz, “Policy shaping: Integrating
human feedback with reinforcement learning,” in
Advances in Neural Information Processing Systems,
pp. 2625–2633, 2013.

7. W. B. Knox and P. Stone, “Combining manual
feedback with subsequent MDP reward signals for
reinforcement learning,” in Proceedings of the 9th
International Conference on Autonomous Agents
and Multiagent Systems: volume 1, pp. 5–12, 2010.

8. M. E. Taylor, N. Carboni, A. Fachantidis, I. Vla-
havas, and L. Torrey, “Reinforcement learning
agents providing advice in complex video games,”
Connection Science, vol. 26, no. 1, pp. 45–63, 2014.

9. R. S. Sutton and A. G. Barto, Reinforcement learn-
ing: An introduction. MIT Press, 2018.

10. M. L. Puterman, Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley,
1994.

11. I. J. Sledge and J. C. Pŕıncipe, “Balancing explo-
ration and exploitation in reinforcement learning
using a value of information criterion,” in 2017 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2816–2820, 2017.

12. K. Subramanian, C. L. Isbell Jr, and A. L. Thomaz,
“Exploration from demonstration for interactive re-
inforcement learning,” in Proceedings of the 2016
International Conference on Autonomous Agents &
Multiagent Systems, pp. 447–456, 2016.

13. I. Moreira, J. Rivas, F. Cruz, R. Dazeley, A. Ayala,
and B. Fernandes, “Deep reinforcement learning
with interactive feedback in a human–robot envi-
ronment,” Applied Sciences, vol. 10, no. 16, p. 5574,
2020.

14. A. L. Thomaz, G. Hoffman, and C. Breazeal, “Real-
time interactive reinforcement learning for robots,”
in AAAI 2005 Workshop on Human Comprehensible
Machine Learning, 2005.

15. A. Ayala, C. Henŕıquez, and F. Cruz, “Reinforce-
ment learning using continuous states and interac-
tive feedback,” in Proceedings of the International
Conference on Applications of Intelligent Systems,
pp. 1–5, 2019.

16. C. Millán, B. Fernandes, and F. Cruz, “Human
feedback in continuous actor-critic reinforcement
learning,” in Proceedings of the European Sympo-
sium on Artificial Neural Networks, Computational
Intelligence and Machine Learning ESANN, pp. 661–
666, ESANN, 2019.

17. P. M. Pilarski and R. S. Sutton, “Between instruc-
tion and reward: human-prompted switching,” in
AAAI Fall Symposium Series: Robots Learning In-
teractively from Human Teachers, pp. 45–52, 2012.

16 A. Bignold et al.

18. F. Cruz, P. Wüppen, S. Magg, A. Fazrie, and
S. Wermter, “Agent-advising approaches in an inter-
active reinforcement learning scenario,” in Proceed-
ings of the Joint IEEE International Conference on
Development and Learning and Epigenetic Robotics
ICDL-EpiRob, pp. 209–214, IEEE, 2017.

19. L. Torrey and M. E. Taylor, “Teaching on a Budget:
Agents Advising Agents in Reinforcement Learning,”
in Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems AA-
MAS, 2013.

20. G. López, L. Quesada, and L. A. Guerrero, “Alexa
vs. Siri vs. Cortana vs. Google Assistant: A com-
parison of speech-based natural user interfaces,” in
International Conference on Applied Human Factors
and Ergonomics, pp. 241–250, Springer, 2017.

21. N. Churamani, F. Cruz, S. Griffiths, and P. Barros,
“iCub: Learning emotion expressions using human
reward,” in Proceedings of the Workshop on Bio-
inspired Social Robot Learning in Home Scenarios,
IEEE/RSJ IROS, p. 2, 2016.

22. S. W. Kwok and C. Carter, “Multiple decision trees,”
in Machine Intelligence and Pattern Recognition,
vol. 9, pp. 327–335, Elsevier, 1990.

23. L. Rokach and O. Maimon, “Decision trees,” in Data
mining and knowledge discovery handbook, pp. 165–
192, Springer, 2005.

24. J. R. Quinlan, “Induction of decision trees,” Ma-
chine learning, vol. 1, no. 1, pp. 81–106, 1986.

25. L. Breiman, Classification and regression trees.
Routledge, 2017.

26. S. Džeroski, L. De Raedt, and K. Driessens, “Re-
lational reinforcement learning,” Machine learning,
vol. 43, no. 1, pp. 7–52, 2001.

27. R. Li, A. Jabri, T. Darrell, and P. Agrawal, “To-
wards practical multi-object manipulation using
relational reinforcement learning,” in IEEE Inter-
national Conference on Robotics and Automation,
pp. 4051–4058, 2020.

28. P. Tadepalli, R. Givan, and K. Driessens, “Rela-
tional reinforcement learning: An overview,” in Pro-
ceedings of the ICML-2004 workshop on relational
reinforcement learning, pp. 1–9, 2004.

29. R. Glatt, F. L. Da Silva, R. A. da Costa Bianchi,
and A. H. R. Costa, “DECAF: deep case-based
policy inference for knowledge transfer in reinforce-
ment learning,” Expert Systems with Applications,
vol. 156, p. 113420, 2020.

30. R. A. Bianchi, R. Ros, and R. L. De Mantaras, “Im-
proving reinforcement learning by using case based
heuristics,” in International Conference on Case-
Based Reasoning, pp. 75–89, Springer, 2009.

31. M. E. Taylor and P. Stone, “Transfer learning for
reinforcement learning domains: A survey,” Journal
of Machine Learning Research, vol. 10, no. 7, 2009.

32. R. A. Bianchi, L. A. Celiberto Jr, P. E. Santos,
J. P. Matsuura, and R. L. de Mantaras, “Transfer-
ring knowledge as heuristics in reinforcement learn-
ing: A case-based approach,” Artificial Intelligence,
vol. 226, pp. 102–121, 2015.

33. B. Kang, P. Compton, and P. Preston, “Multiple
classification ripple down rules: evaluation and pos-
sibilities,” in Proceedings 9th Banff Knowledge Ac-
quisition for Knowledge-based Systems Workshop,
vol. 1, pp. 17–1, 1995.

34. P. Compton, G. Edwards, B. Kang, L. Lazarus,
R. Malor, T. Menzies, P. Preston, A. Srinivasan,
and C. Sammut, “Ripple down rules: possibilities
and limitations,” in Proceedings of the Sixth AAAI
Knowledge Acquisition for Knowledge-based Systems
Workshop, Calgary, Canada, University of Calgary,
pp. 6–1, 1991.

35. D. Herbert and B. H. Kang, “Intelligent conversa-
tion system using multiple classification ripple down
rules and conversational context,” Expert Systems
with Applications, vol. 112, pp. 342–352, 2018.

36. D. Richards, “Two decades of ripple down rules re-
search,” The Knowledge Engineering Review, vol. 24,
no. 2, pp. 159–184, 2009.

37. J. Randløv and P. Alstrøm, “Learning to drive a
bicycle using reinforcement learning and shaping.,”
in ICML, vol. 98, pp. 463–471, Citeseer, 1998.

38. A. Y. Ng, D. Harada, and S. Russell, “Policy in-
variance under reward transformations: Theory and
application to reward shaping,” in Proceedings of
the International Conference on Machine Learning
ICML, vol. 99, pp. 278–287, 1999.

39. S. Devlin and D. Kudenko, “Theoretical considera-
tions of potential-based reward shaping for multi-
agent systems,” in The 10th International Con-
ference on Autonomous Agents and Multiagent
Systems-Volume 1, pp. 225–232, 2011.

40. A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowé,
“Expressing arbitrary reward functions as potential-
based advice.,” in AAAI, pp. 2652–2658, 2015.

41. F. Fernández and M. Veloso, “Probabilistic policy
reuse in a reinforcement learning agent,” in Pro-
ceedings of the fifth International Joint Conference
on Autonomous Agents and Multi-Agent Systems,
pp. 720–727, ACM, 2006.

42. A. Bignold, F. Cruz, R. Dazeley, P. Vamplew, and
C. Foale, “An evaluation methodology for interac-
tive reinforcement learning with simulated users,”
Biomimetics, vol. 6, no. 1, p. 13, 2021.

43. B. H. Kang, P. Preston, and P. Compton, “Sim-
ulated expert evaluation of multiple classification
ripple down rules,” in Proceedings of the 11th Work-
shop on Knowledge Acquisition, Modeling and Man-
agement, 1998.

44. P. Compton, P. Preston, and B. Kang, “The use of
simulated experts in evaluating knowledge acquisi-
tion,” University of Calgary, 1995.

45. B. R. Gaines and P. Compton, “Induction of ripple-
down rules applied to modeling large databases,”
Journal of Intelligent Information Systems, vol. 5,
no. 3, pp. 211–228, 1995.

46. P. Compton, L. Peters, G. Edwards, and T. G.
Lavers, “Experience with ripple-down rules,” in Ap-
plications and Innovations in Intelligent Systems
XIII, pp. 109–121, Springer, 2006.

