
Action Selection Methods in a
Robotic Reinforcement Learning Scenario
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Abstract—Reinforcement learning allows an agent to learn a
new task while autonomously exploring its environment. For this
aim, the agent chooses an action to perform among the available
ones for a certain state. Nonetheless, a common problem for a
reinforcement learning agent is to find a proper balance between
exploration and exploitation of actions in order to achieve an
optimal behavior. This paper compares multiple approaches to
the exploration/exploitation dilemma in reinforcement learning
and, moreover, it implements an exemplary reinforcement learn-
ing task within the domain of domestic robotics to show the
performance of different exploration policies on it. We perform
the domestic task using ε-greedy, softmax, VDBE, and VDBE-
Softmax with online and offline temporal-difference learning. The
obtained results show that the agent is able to collect larger and
faster reward by using the VDBE-Softmax exploration strategy
with both Q-learning and SARSA.

I. INTRODUCTION

Autonomous learning, from a human perspective, is an
activity where past experiences influence the decision-making
on current actions based on associations made with those
actions previously [1]. The same principle is replicated by
Reinforcement Learning (RL) [2]. RL is a class of learning
mechanisms where an agent autonomously executes actions
and receives a reward from its environment. Once the agent
is faced with a similar condition, it will try to make decisions
according to rewards which were obtained earlier.

In our daily life, we need to enhance the learning process
in order to maximize the benefits. One crucial dilemma is
the balance between exploration and exploitation [3], such as
when we face a certain problem in our daily activities and we
need to decide whether to utilize a known strategy to solve the
problem or to look for a different, possibly better solution.
Similarly, this also becomes a challenging task in RL to
enhance the performance by balancing the proportion between
exploration and exploitation. Imbalance could lead to adverse
effects on learning performance [2], [3]. The domination of
exploration would obstruct the agent to maximize short-term
reward, i.e., explorative actions could lead an agent to collect
a higher negative reward in the short-run. In contrast, if
a learning approach is dominated by exploitation an agent
performs actions which could lead it to get stuck in local
minima or suboptimal solutions.

One of the most common approaches to balance the ratio of
exploration and exploitation is by implementing the ε-greedy
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Fig. 1. The reinforcement learning loop showing the agent’s interaction
with the environment. Every time step from the state st, the agent selects an
action at to be performed in the environment obtaining a new state st+1 and
a reward rt+1.

method [4]. This simple method often leads to successful
outcomes, but one of the issues with ε-greedy is that its
setting is global and may not accommodate to state-specific
requirements. Besides ε-greedy, many other successful meth-
ods have been introduced in an attempt to mitigate weaknesses
of traditional approaches, such as softmax [5], VDBE [6], and
VDBE-Softmax [7]. In this paper, we will describe and test
them using off-policy and on-policy learning, i.e. Q-learning
and SARSA, in a domestic robot scenario.

This paper is organized as follows: in the second section, we
present the RL basics along with temporal-difference learning
algorithms Q-learning and SARSA. The third section presents
the exploration strategies used in this work: ε-greedy, softmax,
VDBE, and VDBE-Softmax. In the fourth section, we show
a domestic robotic scenario which is described as a Markov
decision process. The fifth section exposes the main findings
along with a discussion of the obtained results. Finally, in the
sixth section, we draw conclusions from this work.



II. TEMPORAL-DIFFERENCE LEARNING

Reinforcement learning represents a framework where an
agent is able to learn a task by interacting with the environment
[8]. A graphical representation of the basic concept of RL can
be seen in Figure 1.

The core of the RL is formed by a Markov Decision Process
(MDP) [9]. An MDP characterizes several components for RL
which model a problem with {S,A, r, δ, π, V π} parameters
[10]. A state space, denoted by S, is a discrete set of
environment states; an action space, denoted by A, is a discrete
set of actions from the environment’s agent; a state transition
function, denoted by δ : S × A → S, is a function which
gives the potential state s′ when the action a is conducted;
a reward function, denoted by r : S × A → R, is a function
which turns each transition for a given state into a scalar value.
Other components are the policy and the state value function
where policy, denoted by π, is a function which specifies the
agent’s behavior. It maps the action to be taken for each given
state. i.e., πt : S → A. The state value function, denoted
by V π : S → R, is a function that will be used to obtain the
highest reward as the agent will always try to learn. It specifies
the value for each state and maps the state to the reward that
an agent can expect to accumulate.

Initially, an agent observes a certain state st ∈ S in each
time step and decides on a possible action at to perform,
at ∈ A(st), where A(st) is the set of all possible actions
in state s at timestep t. Once the action is performed by the
agent, the environment gives a reward rt+1 accordingly, which
could be positive or negative. When the agent receives the
reward, it uses it to update its action selection policy in order
to maximize its obtained cumulative reward [10].

The policy π is used to map a state to an action through
a function πt(st, at). The learning process changes the policy
in order to obtain experience from the given environment and
to maximize the accumulated reward. The main aim of this
RL model is to achieve an optimal behavior by performing
the best action for each state to get the maximum observed
rewards for the agent [2], [11].

Therefore, the agent is expected to acquire the maximal total
reward from the action taken in each step as the main objective.
The estimation of the total reward that an agent could attain
it is expressed by the following equation:

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt + k + 1|st = s, at = a}.

where Qπ(s, a) is the state-action value, r is the reward
following the policy π in the state s to select action a.
Moreover, γ is the discount rate of future rewards for which
0 < γ ≤ 1 for periodic learning and 0 < γ < 1 for continuous
learning tasks [12].

Updates to the state-action value function are learned by
observing the interaction between the agent and its environ-
ment. There are two common algorithms from the branch of

temporal-difference learning, namely SARSA for on-policy
control [13] and Q-learning for off-policy control [4], [14].
Both of them are characterized by three parameters which
influence their behavior. Firstly, the learning rate α determines
to which degree the most recent information will modify the
previous information. Secondly, the discount factor γ decides
the importance of future reward. If γ is 0, the agent will
only consider the current rewards, and if the factor is 1,
the agent will attempt a long-term high reward. Lastly, the
initial condition Q(s0, a0) is required since RL is an iterative
algorithm.

Although Q-learning and SARSA algorithms technically are
pretty similar, they differ under some circumstances [7]. The
difference between both algorithms from the technical point of
view is the requirement to involve successor-state information.
On the one hand, Q-learning acquires the best policy even
when actions are performed based on more exploratory or even
random policy. Q-learning uses the discounted value from the
optimal action in the successor state Q(st+1, b

∗) [4], [14]:

b∗ ← argmaxb∈A(st+1)Q(st+1, b),

∆Qlearning ← [rt+1 + γQ(st+1, b
∗)−Q(st, at)],

Q(st, at)← Q(st, at) + α∆Qlearning.

On the other hand, SARSA’s name originates from the tuple
Q(s, a, r′, s′, a′), where s and a are the state and the action at
time t, r′ the obtained reward at time t+ 1, and s′ and a′ the
state-action pair reached at time t+ 1. It uses the discounted
value from the action selected according to the used policy in
the successor state Q(st+1, at+1) [13]:

∆SARSA ← [rt+1 + γQ(st+1, at+1)−Q(st, at)],

Q(st, at)← Q(st, at) + α∆SARSA.

Q-learning and SARSA algorithms mainly differ in the way
they update the Q-values. By using Q-learning, the Q-values
are updated choosing the best possible action in the next
state. On the contrary, using SARSA a new action with the
same policy is selected which in turn leads to a new reward
value. In essence, SARSA respects the fact that future action
selection may not be perfect and in the case of the existence of
highly undesirable states, it converges to a safer behavior that
attempts to circumvent these states. Q-learning in the same
scenario would disregard the risk of a misstep and converge
under the assumption that the agent will select its actions
solely based on the Q-values of a state. A comprehensive
example of the different behaviors of the two algorithms can
be found in their application on the cliff-walking task [2].



III. EXPLORATION STRATEGIES IN
REINFORCEMENT LEARNING

In this section, we briefly describe the different exploration
strategies which are used in this work: ε-greedy, softmax,
VDBE, and VDBE-Softmax.

A. ε-greedy

According to Sutton and Barto, the ε-greedy method is the
most chosen approach to balance exploration and exploitation
in RL [2]. The parameter ε controls the amount of exploration
and defines the randomness of action selections [4]. An
advantage of ε-greedy is that exploration specific data such
as counters [15] or confidence bounds [16] are not required to
be set. The agent chooses a random action with the probability
0 ≤ ε ≤ 1 and otherwise chooses greedily one of the optimal
actions which have been learned in respect to the Q-function:

π(s) =

{
random action from A(s) if ξ < ε

argmaxa∈A(s)Q(s, a) otherwise,

where ξ is a random number drawn at each time step from a
uniform distribution between 0 and 1.

B. Softmax

The softmax approach is used to convert state-action values
into action probabilities using a Boltzmann distribution [5]:

π(a|s) = Pr {at = a|st = s} =
e
Q(s,a)
τ∑

b e
Q(s,b)
τ

,

where the parameter τ , also called temperature, decides how
much Q-values influence the action selection. Low temper-
atures lead to greedy action selection with regards to Q,
whereas high temperatures cause all actions to have more
similar chances of being chosen.

C. VDBE

Classic ε-greedy and softmax exploration assume similar
exploration behavior for all states. Often, however, especially
in episodic tasks, states are naturally being explored unequally,
with some initial states reached far more often than others
throughout episodes. To reduce unnecessary exploration once
knowledge about these initial states has been sufficiently
established, Tokic proposes the notion of a Value-Difference
Based Exploration (VDBE) [6]. The key part of it is the
introduction of a state-dependent exploration probability ε(s)
as opposed to a global parameter ε. The exploration probability
of a state s is updated every time an action a is taken in that
state, where the nature of the change depends on the difference
in a Boltzmann distribution between the old and the updated
value of Q(s, a). Larger differences in these Q-values lead to
larger values of f and in turn to larger values of ε, i.e. more
exploration. The concrete update steps for ε(s) are as follows:

f(s, a, σ) =∣∣∣∣∣ e
Qt(s,a)

σ

e
Qt(s,a)

σ + e
Qt+1(s,a)

σ

− e
Qt+1(s,a)

σ

e
Qt(s,a)

σ + e
Qt+1(s,a)

σ

∣∣∣∣∣
=

1− e
−|Qt+1(s,a)−Qt(s,a)|

σ

1 + e
−|Qt+1(s,a)−Qt(s,a)|

σ

,

εt+1(s) = δ ∗ f(s, a, σ) + (1− δ) ∗ εt(s).

The introduced parameters are σ, the so-called inverse sensi-
tivity, and δ. The parameter σ gets its name from the property
that low values cause the process to be very sensitive to
changes in the Q-value, therefore, even small changes will
make future exploration much more likely. High values of σ,
however, mean that very large differences are needed to make
exploration likely. The parameter δ, on the other hand, denotes
the influence of a single action on the ε-value of a state. This
has to be considered as the changes are made following an
already executed action and none of the other possible actions
or the certainty about their benefit have any influence on this
particular update step. Tokic thus suggests choosing δ roughly
as the multiplicative inverse of the number of actions in the
state so that each action may have an equal contribution to the
exploration likelihood update.

D. VDBE-Softmax

An additional adaptation to the previously introduced VDBE
is to include the softmax behavior in the exploration strat-
egy [17] resulting in the so-called VDBE-Softmax [7]. This
means that just like for basic VDBE, a state dependent
exploration probability is maintained and evaluated when to
choose whether to explore or not.

π(s) =

{
softmax action if ξ < ε(s)

argmaxa∈A(s)Q(s, a) otherwise.

In the former case, the executed action is not chosen by a
uniform distribution like in VDBE or ε-greedy but by applying
the softmax rule. This is meant to help in cases where some
actions yield strongly negative rewards, which in combination
with Q-value oscillations could mean an unnecessary amount
of exploration of (clearly bad) actions.

IV. IMPLEMENTED ROBOTIC SCENARIO

To test the various exploration strategies, we implemented a
robotic domestic scenario introduced in [18] which was orig-
inally constructed to test the influence of external interaction
during the reinforcement learning task. Likewise, it can also
be used to examine the influence of the previously described
exploration approaches and the corresponding parameteriza-
tion.



In the scenario, an autonomous robot is faced with the task
of cleaning a table in front of it. There are three defined
areas: left and right corresponding to either half of the table
surface, as well as home corresponding to an additional storage
position. Two interactable objects are part of the scenario,
namely the goblet and the sponge. Every state st is represented
as a vector as follows:

st =< handObj , handPos, gobletPos, sideCond [] >,

where handObj is used to indicate which object is taken by
the robot, handPos is the location where the robot’s hand
is located, gobletPos indicates where currently the goblet is
placed, and sideCond[] is a tuple with two values, each of
them related to one side of the table showing if the side is
already cleaned.

We start a learning episode by placing the sponge at the
home position and the goblet is randomly placed on one of
the sides of the table. The initial state s0 is then represented
as a vector as follows:

s0 =< free, home, left |right , [dirty , dirty ] > .

The robot has seven different actions available to execute
with its arm: get, drop, go left, go right, go home, clean, and
abort. The action get picks up an item available at the current
position of the arm, drop puts down the currently held object
(if any) at the location that the arm is at, go left, go right,
and go home move the robot’s arm to the indicated position,
clean makes the robot attempt to clean the current position
with whatever object it happens to hold at that point of time,
and abort cancels the current episode of learning and finishes
the task returning to the initial state.

The goal for the robot is to end up with its arm in the home
position not holding any objects and with both sides of the
table cleaned. There are plenty of action sequences to achieve
this result, with the shortest ones consisting of 15 actions. The
final state sf can be represented as:

sf =< free, home, left |right , [clean, clean] > .

A number of actions can also lead to immediate failure
of the episode when executed at the wrong moment, like
attempting to clean a location that the goblet is currently at
or while it is being held. We name these states as failed-
states. The reward function accordingly rewards 1 for the
goal state, −1 for all failed-states and −0.01 for all other
states (to discourage the robot from executing redundant
actions), resulting in a maximum reward of 0.86 that the robot
can possibly achieve. The reward function is summarized as
follows:

r(s) =

 1 if s is a goal state
−1 if s is a failed-state

−0.01 otherwise.

Fig. 2. Simulation of the table-cleaning scenario which comprises three
locations, two objects, and seven actions.

Fig. 2 shows the implemented robotic scenario in a robot
simulator.

V. RESULTS AND DISCUSSION

Using the described robotic scenario, we trained 20 indepen-
dent agents each for 1000 episodes using different exploration
strategies for both Q-learning and SARSA with differing
parameterization according to each strategy. As general pa-
rameters, we chose the learning rate α = 0.8 and the discount
factor γ = 0.9. For the VDBE-based strategies, we chose
δ = 0.1 roughly as the inverse of the number of actions the
robot is considering in each state.

We track the average reward that the agent obtains for each
method and parameterization instance as can be seen in Figure
3. The curves are smoothed out using a convolution of 20
neighbors for clarity.

By using ε-greedy we perform the scenario using ε values
as ε ∈ {0.01, 0.05, 0.1, 0.15, 0.2} for both Q-learning and
SARSA. In both cases, the two best performances are obtained
with ε = 0.1 and ε = 0.05 which suggests that low exploration
values benefit the implemented scenario.

With softmax exploration, we use τ values as τ ∈
{0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. Low values of the tem-
perature parameters obtain better results, e.g., τ = 0.001 and
τ = 0.0001.

In the case of VDBE, we use τ = 0.001 and σ values as
σ ∈ {0.001, 0.01, 0.1, 1.0, 10.0, 100.0}. In case of Q-learning
the best performance is obtained with σ = 0.1, σ = 1.0,
σ = 10.0, and σ = 100.0, i.e., σ > 0.01. When SARSA is
used the best performance is achieved for σ = 1.0, σ = 10.0,
and σ = 100.0, i.e., σ > 0.1.



(a) Q-learning + ε-greedy. (b) SARSA + ε-greedy.

(c) Q-learning + softmax. (d) SARSA + softmax.

(e) Q-learning + VDBE. (f) SARSA + VDBE.

(g) Q-learning + VDBE-Softmax (h) SARSA + VDBE-Softmax

Fig. 3. Accumulated reward by the RL agent performing the table-cleaning task using ε-greedy, softmax, VDBE, and VDBE-Softmax as exploration strategies.
Each method is performed with Q-learning and SARSA.



For VDBE-Softmax, we use τ = 0.001 and σ values as
σ ∈ {0.001, 0.01, 0.1, 1.0, 10.0, 100.0}. In this case, regardless
of the temporal-difference learning, the agent obtains a good
performance for all the values of σ used.

The obtained learning performance in our scenario seems
to be better when using relatively greedy parametrization, e.g.
low ε for the ε-greedy approach, low temperatures for softmax,
and high inverse sensitivity values for VDBE and VDBE-
Softmax respectively. The quality of the final solutions using
the optimal parameters does not differ a whole lot except for
ε-greedy which even for an extremely low ε does not manage
to produce a better average cumulative reward than 0.6 and
0.7 for SARSA and Q-learning, respectively. Meanwhile, all
other approaches on average end up almost or entirely at the
best possible cumulative reward of 0.86.

In terms of convergence speed, VDBE-Softmax outperforms
the other approaches by acquiring its optimal average reward
after around 300 episodes for SARSA and 280 episodes for Q-
learning. Only Q-learning with an ε-greedy strategy converges
comparably faster but ends up at a significantly worse average
reward. The other approaches reach their final solutions at
around 350 episodes.

In the case of VDBE-Softmax, our implemented scenario
is robust towards suboptimal parametrization as compared
to simple VDBE. When choosing σ too low, especially in
combination with SARSA, a cycle of exploration, oscillating
Q-values and constantly large ε-values causes the VDBE ap-
proach to converge only very slowly or not at all. Furthermore,
parametrization seems not to influence significantly VDBE-
Softmax, where any choice within the range of our tests
yielded almost the same, consistent results.

VI. CONCLUSION

We have shown VDBE-Softmax to be an exploration strat-
egy to make learning very consistent and reliable as well
as robust to parameter changes. This suggests that making
exploration probabilities dependent on Q-value changes is
indeed a valid approach for successful learning. Even though
ε-greedy is the most used exploration/exploitation method due
to its simplicity and which regularly works well, it is very
slow and in many occasions does not enable the agent to
achieve the optimal behavior. Furthermore, although softmax
and VDBE improve the performance in comparison with the
ε-greedy method in terms of accumulated reward, VDBE-
Softmax outperforms all of them in the implemented scenario
collecting greater reward and obtaining faster convergence.

The scenario we discussed in this paper simplifies to make
comparisons easy and meaningful, however, there exists a
plethora of other learning problems that are of different
nature. Testing these methods on them may help as well
to acquire a deeper understanding of effective exploration
methods. Particularly, testing the method’s performance on

problems with larger state-spaces and more complex solutions
may yield interesting insights and better comparisons between
their expected quality.
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