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Abstract. Reinforcement learning (RL) is a learning approach based
on behavioral psychology used by artificial agents to learn autonomously
by interacting with their environment. An open issue in RL is the lack of
visibility and understanding for end-users in terms of decisions taken by
an agent during the learning process. One way to overcome this issue is
to endow the agent with the ability to explain in simple terms why a par-
ticular action is taken in a particular situation. In this work, we propose
a memory-based explainable reinforcement learning (MXRL) approach.
Using an episodic memory, the RL agent is able to explain its decisions
by using the probability of success and the number of transactions to
reach the goal state. We have performed experiments considering two
variations of a simulated scenario, namely, an unbounded grid world
with aversive regions and a bounded grid world. The obtained results
show that the agent, using information extracted from the memory, is
able to explain its behavior in an understandable manner for non-expert
end-users at any moment during its operation.

Keywords: Reinforcement learning · Explainable reinforcement
learning · Human-aligned artificial intelligence

1 Introduction

The aim of reinforcement learning (RL) [17] is to provide an autonomous agent
with the ability to learn new skills by only interacting with its environment. RL
is a learning approach based on behavioral psychology and conditioned behavior
present in mammals and human decision-making within the brain [12]. While
RL has been shown to be an effective learning approach, an open issue is the
lack of a mechanism that allows them to clearly communicate the reasons why
they choose certain actions given a particular state. In this regard, it is not easy
for a non-expert end-user to entrust important tasks to an AI-based system that
cannot justify its reasoning [1].
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In human cognition, for instance, toddlers are still unable to clearly express
reasons about their decisions, mainly due to the incomplete development of lan-
guage acquisition [14]. The lack of understanding by other interacting agents
leads to them not considering toddlers as peers. However, as they develop the
ability to give sound and meaningful explanations about their decisions, the
mutual confidence level increases and they become collaborative agents1 [2].

To model artificial systems, different alternatives are possible, i.e., phe-
nomenological models (white-box models), empirical model (black-box models),
and hybrid models (gray-box models) [3]. Even though artificial agents are con-
sidered to be black-boxes, frequently, it is possible to provide technical clues
about why actions are decided, e.g., an RL agent could explain its behavior
in terms of Q-values and future reward [4]. Nevertheless, this kind of explana-
tion makes little sense for non-expert users who need to be given explanations
using domain-like language in order to allow them to fully understand the agent
behavior. In this regard, there have been some research works pursuing a better
understanding of RL agent’s decisions. However, they have mostly focused on
interpretable RL [16] and explainable agency [8], overlooking the option of using
the agent’s experience to understand its behavior.

In this paper, we propose a memory-based explainable reinforcement learning
(MXRL) approach, which allows a learning agent to explain in domain language
the decision of selecting an action over the other possible ones. In our approach,
explanations are given using the probability of success and the number of tran-
sitions needed to reach the goal state. Thus, an RL agent is able to explain its
behavior not only in terms of Q-values or the probability of selecting an action
but rather in terms of the necessity to complete the intended task.

2 Related Works

2.1 Reinforcement Learning

RL is studied as a decision-making mechanism in both cognitive and artificial
agents [17]. An RL agent learns through interaction with its environment, trying
to map inputs into actions. In RL, there is no explicit instructor but rather the
awareness of how the environment answers to what it is done by the learning
agent. Therefore, an agent should be able to sense the environment’s state and
perform actions in order to transition to a new state.

Formally, an RL agent has to learn a policy π : S → A, where S is the set of
states and A the set of available actions, to produce the highest possible reward
from a state st [17]. The optimal policy is denoted by π∗ and the optimal action-
value function is denoted by q∗. The optimal action-value function is solved
through the Bellman optimality equation for q∗, as shown in Eq. 1.

q∗(st, at) =
∑

st+1

p(st+1|st, at)[r(st, at, st+1) + γ max
at+1

q∗(st+1, at+1)] (1)

1 Agent, in this context, refers to any actor in an environment such as human, animal,
or artificial agent.
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where st is the current state, at the taken action, st+1 the next state reached
after performing action at from the state st, and at+1 is an action that could be
taken from st+1. In Eq. 1, p represents the probability of reaching the state st+1

given the current state st and the selected action at. Finally, r is the reward
signal received after performing action at from the state st.

2.2 Explainable Artificial Intelligence

Over the last few years, explainable artificial intelligence (XAI) has emerged
as a prominent research area that aims to provide black-box AI-based systems
the ability to give human-like and user-friendly explanations to non-expert end-
users [11]. The idea behind XAI is not only intended to provide explanations,
but also to allow an AI-system to: justify its decisions and results, control and
prevent problems, improve its behavior, and discover new knowledge [1]. The
need of XAI is mainly motivated by the need for end-users of trust, interaction,
and transparency between them and AI-based systems. Furthermore, XAI is
often considered harder than the underlying decision-making process [1], due to
the additional interpretability process.

XAI is a vast field, like AI itself, with applications in areas such as transport,
finance, medicine, and military among other [6]. Recently, there has been some
research studies in explainability pointing to areas such as interpretable RL or
explainable agency. These approaches are described next.

2.3 Interpretable Reinforcement Learning

Interpretable RL is an approach which encodes the tasks and actions using
human-interpretable instructions. Shu et al. [16] have introduced an approach
for hierarchical and interpretable skill acquisition using human descriptions to
decompose the tasks into a hierarchical plan with understandable actions. Hein
et al. [7] have combined RL with genetic programming (GP) for interpretable
policies. They have tested their approach using the mountain car and cart-pole
balancing RL benchmarks. However, the provided explanations are only for the
learned policy employing equations for that instead of a natural-like represen-
tation. Verma et al. [19] have introduced the programmatically interpretable
reinforcement learning (PIRL) framework for verifiable agent policies. However,
the framework works with symbolic inputs considering only deterministic poli-
cies, not including stochastic ones.

In the field of Human-Robot Interaction (HRI), the term of explainable
agency has been used to refer to robots engaged in answering questions about its
reasons for the decision-making process. Langley et al. [8] propose the elements
of explainable agency as content that support explanations, an episodic memory
to record states and actions, and access to its experience. However, in their work,
they do not implement the proposed approach.

In RL, there have also been a few works trying to provide agents with expla-
nation mechanisms. For instance, Wang et al. [20] proposed an explainable rec-
ommendation system using an RL framework. Pocius et al. [13] utilized saliency
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maps as a way to explain agent decisions in a partially-observable game scenario.
They focused mainly on deep RL and, hence, provided visual explanations. Mad-
umal et al. [10], inspired by cognitive science, proposed to use causal models to
derive causal explanations. Nevertheless, the causal model had to be previously
known for the specific domain. Sequeira et al. [15] developed a framework to
provide explanations employing thoughtful analysis in three levels of the RL
agent interaction history. Tabrez and Hayes [18] used an HRI scenario to correct
a sub-optimal human model behavior, formulated as a Markov decision process
(MDP). In their research, they reported that users found the robot more helpful,
useful, and more intelligent when explanations and justification were provided.
However, the approach still lacks the comprehensibility of its policy.

3 Memory-Based Explainable Reinforcement Learning

The behavior of an RL agent might be technically explained in terms of the
Q-values or also in algorithmic terms. Nonetheless, in this work, we look for
explanations that make sense for all kinds of possible end-users and not only
to those who are able to understand the underlying learning process behind an
artificial agent. In this regard, we look for explanations similarly as it is done by
interacting people by using domain-specific language.

To provide artificial agents with the ability to explain the performed actions
is currently one of the most critical and complex challenges in future RL
research [6]. This challenge is especially important, considering RL-based sys-
tems often interact with human observers. Therefore, it is essential that non-
expert end-users can understand agents’ intentions as well as to obtain more
details from the execution in case of a failure [5].

In this paper, we focus on the decision-making process to provide an under-
standing to the user of what motivates the agent’s specific actions from different
states, taking into account the problem domain. From a non-expert end-user
perspective, we can consider the most relevant questions as to ‘why?’ and ‘why
not?’ [9,10]. For instance, the following questions may be asked to an artificial
agent in order to better understand its behavior:

– Why did you step forward in the last movement?
– Why did you not turn to the right in this situation?

Thus, in order to answer these questions in an understandable domain lan-
guage, our explanations intend to determine both:

– the artificial agent’s probability of success, and
– the number of transitions to reach the goal state, to either finish the task or

end it within a time-frame.

Once the probability of reaching the final state is determined the agent will
be able to provide the end-user a more compensable explanation for why one
action was preferred over others. Moreover, the number of transitions to the goal
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will give the end-user an idea about how many steps are necessary to finish the
task. Therefore, the agent may explain when an action is preferred to complete
the task faster.

We propose a memory-based explainable reinforcement learning (MXRL)
approach to compute the success probability Ps and the transitions to the goal
Nt consisting of an RL agent with an episodic memory. By accessing the memory,
it is possible to understand the agent’s behavior based on its experience by
using introspection in three levels [15], i.e., environment analysis (to observe
certain and uncertain transitions), interaction analysis (to observe state-action
frequencies), and meta-analysis (to obtain combined information from episodes
and agents). We implement a list of state-action pairs: TList comprising the
transactions the agent performed during its learning process.

To compute the success probability Ps, we previously compute the total
number of transitions Tt and the number of transitions involved in a success
sequence Ts. To obtain Ts, we use the transactions previously saved into the list
TList. Every time the agent reaches the final state, we compute the probability
Ps ← Ts/Tt considering transitions involved in the path towards the goal state.
The transitions to the goal Nt is computed every time after finishing an episode.
For each state, Nt is determined by the position in the list TList since all transi-
tions have been previously saved there. Therefore, each state is as far from the
goal as its position in the list, i.e., its index + 1.

Algorithm 1. Memory-based explainable reinforcement learning approach with
the on-policy method SARSA to compute the probability of success and the
number of transitions to the goal state.
1: Initialize Q(s, a), Tt, Ts, Ps, Nt

2: for each episode do
3: Initialize TList[]
4: Choose an action using at ← selectAction(st)
5: repeat
6: Take action at

7: Save state-action transition TList.add(s, a)
8: Tt[s][a] ← Tt[s][a] + 1
9: Observe reward rt+1 and next state st+1

10: Choose next action at+1 using softmax action selection method
11: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1) − Q(st, at)]
12: st ← st+1; at ← at+1

13: until s is terminal (goal or aversive state)
14: if s is goal state then
15: for each s,a ∈ TList do
16: Ts[s][a] ← Ts[s][a] + 1
17: end for
18: end if
19: Compute Ps ← Ts/Tt

20: Compute Nt for each s ∈ TList as pos(s, TList) + 1
21: end for
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In this paper, an aim is to compare the probability of choosing an action,
computed from the Q-values, against the probability of being successful. There-
fore, we have implemented the on-policy method SARSA and the softmax action
selection method. Algorithm 1 shows our MXRL approach to train RL agents
using episodic memory. Whereas in line 7 each executed state-action pair is saved
into the memory, lines 19 and 20 compute the final probabilities of success Ps

and the number of transitions to the goal state Nt for each episode.

4 Experimental Set-Up

In order to produce explanations related to the context, we implemented a grid
world scenario in two versions: bounded and unbounded. Therefore, the same
state-action pair may lead to different characteristic for the explanation depend-
ing on the context. We use a 3 × 4 grid world, as shown in Fig. 1. In the figure,
it is possible to observe the 12 states in which the agent can be. The goal state
is shown with a green circle at the right bottom. The gray circle represents the
agent which needs to find one path towards the goal state. In every episode,
the agent is located in a random initial position within the grid world. Over
the episodes, the learning agent has to learn a policy in order to reach the goal
position. There are four allowed actions in this scenario: down, up, right, and
left.
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Fig. 1. The 3 × 4 grid world surrounded by aversive regions. The agent may move in
four directions: down, up, right, and left. The green circle shows the goal state. If the
aversive region is reached by the agent, the learning episode is finished and a new one
started. In the bounded grid world scenario, the agent is not allowed to step into the
aversive regions. (Color figure online)

In principle, we consider an unbounded grid world, i.e., a grid world where the
agent might get into aversive regions leading to stop the current learning episode
and restart a new one. The aversive regions are shown in yellow in Fig. 1. In this
case, the probability of being successful is computed after every learning episode
and depends on the experience of each agent to reach the final state.

Furthermore, we have also considered a bounded grid world, i.e., a grid world
from where the agent is not allowed to step out. Therefore, every time the agent
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tries to step out the grid world, the current state is not updated, keeping the
position as it was previously to select that action. In this context, the agent has
a constant success probability of 1 since it is always able to complete the task.
However, the time steps needed to get the goal are different for each reached
state after performing an action.

5 Experimental Results

For the learning process, the reward function returns a positive reward of 1 when
the agent reaches the final state and a negative reward of −1 when the agent
enters an aversive region. All the experiments have been performed using the
on-policy learning algorithm SARSA and the softmax action selection method
for the training of 100 agents. The following plots show the average results.
The parameters used for the training are: learning rate α = 0.3, discount factor
γ = 0.9, and softmax temperature τ = 0.25, all of them were experimentally
determined and related to our scenario. The previous parameters are mentioned
here just as a reference, but they are not relevant for this work. These parameters
do affect the agents’ ability to learn a solution. However, we are interested in
understanding the decision, rather than the speed or capacity of the learning
agents.

5.1 Unbounded Grid World

In the unbounded grid world scenario, the agent is allowed to step out of the grid
into the aversive region. Figure 2 shows the obtained Q-values, the probability
of choosing an action, the probability of success, and the number of transitions
to the goal state.

After training is complete, the average Q-values are shown in Fig. 2a. It can
be observed that the agent does not favor actions of going up or going left since,
independently of the current state, they always result in the agent moving further
away from the goal state. In general terms, the Q-values, also show symmetric
values, which indeed means the agent may select any route to the goal as long
as its movements are down or right. Of course the closer to the goal state the
higher reward which is shown, for instance, in states 7 and 10 with actions down
and right respectively, both cases being final state’s neighbors. There are a few
exceptions with low Q-value when moving down (states 8, 9, and 10) and moving
right (states 3 and 7) which represent the fact of stepping out the grid into the
aversive region.

Figure 2b shows the average softmax probability of choosing an action from
each state after learning. Although the probabilities of choosing an action are
connected with the Q-values in terms of the different possible paths to the goal
state, they only explain how likely it is to select an action rather than how
successful the agent will be by selecting it. Thus, it cannot clearly be explained
yet to a non-expert end-user why an RL agent would favor one of those actions.
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Fig. 2. Obtained results unbounded grid world. (a) Q-values. It can be seen that the
agent does not favor actions which lead it further from the goal state, i.e., moving up
or left. Additionally, the Q-values show symmetry considering the possible paths to the
goal state. (b) Probability of choosing an action. While the softmax values show that
the agent may select any path to the goal state with similar probability, they do not
provide enough information in domain language. (c) Probability of success considering
state-action pairs. Actions leading to the aversive region have a probability of success
equal to 0. Moreover, actions far from the goal state or actions which get the agent
further from the goal may also be successful if the right sequence is taken from there.
(d) Evolution of the number of transitions over the learning episodes to reach the goal
state. After training, the agent learns the shortest path to the goal.

Figure 2c shows the probability of success for each state-action pair after
the learning process. The probabilities are computed after each episode using
the memory. As previously discussed, they are a more transparent manner to
explain to a non-expert end-user the reasons why an RL agent favors specific
actions from specific states. In Fig. 2c, for instance, it is clear to see what actions
lead to the aversive region as they show probability equal to 0. Moreover, it is
shown that even actions which move the agent further from the goal state may
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eventually be successful, or that states located far from the goal may also be
highly successful if the proper sequence of actions is taken.

Additionally, Fig. 2d shows the number of transitions to reach the goal posi-
tion from every state over the learning episodes. The number of actions executed
in this case is computed taking into account only the successful runs of RL. After
150 episodes, the agent learns the shortest possible paths from all states.

In this context, one possible question to the artificial agent is: Why did you
choose action down when in state 0? Trying to explain this in term of Q-values
means to show to an end-user the following information. Q(s = 0, a = down) =
−0.181, Q(s = 0, a = up) = −0.998, Q(s = 0, a = right) = −0.411, Q(s = 0, a =
left) = −0.998, which is pointless for a non-expert user. However, if we use the
probability of success, we can observe that Ps(s = 0, a = down) = 0.736, Ps(s =
0, a = up) = 0, Ps(s = 0, a = right) = 0.656, Ps(s = 0, a = left) = 0. Therefore,
the agent may answer the end-user: I chose to go down because that has a 73.6%
probability of successfully reaching the goal. Another possible question to the
agent is: Why did you not choose to go left when in state 0? Given the previous
Ps values, one possible answer is: I did not choose left because that has a zero
probability of success, whereas by choosing down has a 73.6% probability of
success, which was higher than other actions.

5.2 Bounded Grid World

As aforementioned, the bounded grid world is an always success scenario since
the agent cannot step out of the grid world into the aversive region and, therefore,
eventually will always reach the goal state. Figure 3 shows the obtained Q-values,
probability of choosing an action, and the number of actions to the final state.

In Fig. 3a, the obtained Q-values present similar distribution as the previous
unbounded case, i.e., actions moving the agent up and left have lower values in
comparison with down and right that moves the agent closer to the goal position.

In this case, the probability of choosing an action is also related to the Q-
values, as shown in Fig. 3b. However, this probability does not provide enough
information to understand and explain the action-selection decision by the RL
agent, especially considering that the agent never fails the task in the bounded
grid world. Therefore, in this scenario, to compute the number of transitions to
reach the goal and the probability of success within a time window is imperative.
Thus, an RL agent may answer more clearly questions as to why a particular
action is preferred over others from a specific state referring to the number of
steps needed to reach the goal.

Figure 3c shows the evolution of the probability of success over the learning
episodes with the agent starting in position 0 (similar charts can be generated
starting from any state). Three different time windows are considered as exam-
ples, i.e., the probability of reaching the goal in 8, 12, and 16 actions. In Fig. 3d
is shown the number of transitions from each state to reach the goal state over
the learning episodes. The RL agent may use this information to answer if a
taken action reaches another state, from where it is faster to get it to the final
state.
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Fig. 3. Obtained results bounded grid world. (a) Q-values. The RL agent favors down
and right actions since get it closer to the goal state. As in the unbounded scenario, the
Q-values are symmetric meaning that the agent has no particular preference for similar
paths to the goal. (b) Probability of choosing an action. The softmax probabilities
show only how likely it is to select an action after the learning process; however, they
do not present information about the time-steps needed to success from a particular
state-action pair. (c) Probability of success from position 0 within a specific window of
actions using cumulative normal distribution. The larger the window, the higher the
probability of finishing the task. To obtain the maximal probability are required 78, 48,
and 32 episodes for a window of 8, 12, and 16 actions respectively. (d) Evolution of the
number of transitions to reach the goal state. Since this is an always success scenario,
it is relevant to provide explanations about the steps needed to reach the goal.

In this problem, a possible question for the agent could be: What is the
probability of finishing the task in 8 movements starting from the state 0? One
more time, if we want to answer this question in terms of Q-vales to the end- user
we should show that Q(s = 0, a = down) = −0.368, Q(s = 0, a = up) = −0.993,
Q(s = 0, a = right) = −0.243, Q(s = 0, a = left) = −0.994, which has no
meaning for a non-expert end-user. However, if we refer to the plot Fig. 3c, we
can clearly observe the probability of finishing the task in 8 movements starting
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from state 0. For instance, after 30 training episodes the agent may answer: I can
finish the task in 8 movements with a probability of 39.4%, or after 60 episodes
the agent’s answer may be: I can complete the task in 8 moves with a probability
of 86.5%.

6 Conclusions

In this work, we have presented an MXRL approach aiming an agent to explain
to non-expert end-users the reasons why some decisions are taken in certain situ-
ations. To this end, using a episodic memory, we have computed the probability
of success and the number of steps to the goal state, which allow the agent to
provide explanations using domain-based language. Our experiments have been
performed in a scenario with two variations, an unbounded and a bounded grid
world. The obtained results show that the agent, using the episodic memory,
is able to find clear explanations for end-users with no previous knowledge of
machine learning techniques.

The explanations shown in this work are examples of possible answers
obtained from the resulting probability of success and the number of transi-
tions to the goal during the learning process. Currently, our method presents
some limitations as the use of memory in large solution spaces. Moreover, to
this point in this work, we have only considered a discrete episodic task with
a terminal goal state. In this regard, the obtained results motivate future work
in many possible directions. For instance, we are planning to extend our app-
roach to compute the probability of success and the number of transitions to
the goal by using another more general method, such as function approximator,
Bayesian methods, or phenomenological relations from the Q-values. By using a
more general estimation method, our approach might be scaled to more complex
scenarios as problems with no final state, i.e., which need to operate continuously,
or problems with continuous state-action representation.
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