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Francisco Cruz∗†, Peter Wüppen∗, Sven Magg∗, Alvin Fazrie∗, and Stefan Wermter∗
∗Knowledge Technology, Department of Informatics, Universität Hamburg
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Abstract—Reinforcement learning has become one of the
fundamental topics in the field of robotics and machine learning.
In this paper, we expand the classical reinforcement learning
framework by the idea of external interaction to support the
learning process. To this end, we review a number of proposed
advising approaches for interactive reinforcement learning and
discuss their implications, namely, probabilistic advising, early
advising, importance advising, and mistake correcting. Moreover,
we implement the advice strategies for interactive reinforcement
learning based on a simulated robotic scenario of a domestic
cleaning task. The obtained results show that the mistake correct-
ing approach outperforms a purely probabilistic advice approach
as well as the early and importance advising approaches allowing
to collect more reward and also to converge faster.

I. INTRODUCTION

Recently, novel Artificial Intelligence (AI) technology has
been built for human-agent interaction. The interaction be-
tween humans and AI systems is increasing, e.g., by using
companion robots, autonomous cars, and even video games
since AI players can make the games become more impressive
and challenging. In this regard, AI agents should implement
learning approaches which could make them learn to act
in unpredicted scenarios through interaction with humans or
other AI systems.

Reinforcement Learning (RL) [1] has proven to have great
potential as a learning method, especially when learning
multiple tasks. The idea behind RL is to continuously observe
the current environment and to respond accordingly with a set
of desired actions. With an RL approach, the agent explores
the environment around it with the aim of maximizing the
rewards that it could gain by interacting with it.

Although RL works well in most cases, an open issue is
the time needed to train an autonomous agent in terms of the
repetition of actions and episodes [2]. To overcome this issue,
an alternative is Interactive Reinforcement Learning (IRL)
where a trainer is added to advise over the policy by suggesting
actions to perform in selected states. Fig. 1 shows the IRL
framework where the learner-agent continuously interacts with
the environment and a trainer-agent provides advice in some
episodes.

In IRL, a trainer-agent advises a learner-agent not in every
single episode but rather in just some of them [3], [4].
Therefore, the question arises when to deliver the limited
amount of advice in order to use it effectively in the episodes
to achieve best learning and thus minimize the trainer-learner
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Fig. 1. Interactive reinforcement learning diagram showing an agent’s
interaction with its environment and a trainer providing action advice.

communication [5], [6]. In this paper, we show four agent-
advising approaches: probabilistic advising, early advising,
importance advising, and mistake correcting. All these ap-
proaches are tested within a domestic robot scenario using
two artificial agents in an IRL framework, i.e. a learner-agent
receiving advice from an artificial trainer-agent.

II. REINFORCEMENT LEARNING AND
INTERACTIVE FEEDBACK

Up to now, several fields have implemented the RL method
and it is proven to show great performance in machine learning
problems [7]. RL is a learning framework where an agent
observes the environment continuously and learns to respond
with a set of allowed actions within the environment. The
agent, once it performed the desired action, will receive
feedback from the environment. Each of the actions performed
by the agent is selected based on an internal decision-making
policy π which is simply a probability of selecting an action
a to be performed for a given state s.

During the learning process, an RL agent perceives a certain
state st each time (st ∈ S) and needs to select a possible
action at to perform it (at ∈ A(st)). Once the action has
been executed by the agent, a positive or a negative value
will be provided as a reward rt+1 for the agent by the
environment together with the next state st+1 as shown in
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Fig. 1. Moreover, the learning process changes the policy in
order to gain experience from this episode, as the main goal
of the agent is maximizing the accumulated reward [1].

The total reward estimation which an agent could obtain by
performing an action in the current state (action-value pairs)
can be estimated as follows:

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a} (1)

where Qπ(s, a) is the state-action pair value and rt is the
reward for action a = at under the policy π in the state s = st.
Moreover, γ is the discount rate determining future action’s
influence (0 ≤ γ < 1). The optimal estimation of state-action
pair values Qπ(s, a) can be obtained by the Bellman equation
as follows:

Q∗(s, a) =
∑
s′

P (s′|s, a)[r(s, a, s′) + γmax
a′

Q(s′, a′)] (2)

where Q∗(s, a) is the optimal state-action pair value esti-
mation, P is the probability to achieve the subsequent state
s′ = st+1 by performing action a in the current state s, and
a′ represents the possible action in the future state s′ [1].

The basic strategy of RL is very closely related to how
humans and animals initially learn to fulfill tasks and in-
teract with their environment [8]. However, human learning
mechanisms have a clear advantage in the direct comparison:
they do not exclusively work tediously by trial and error, but
have helpful outside influences to guide learning in social
environments. For example, imitation [9] and demonstration
[10] play a big role for transfer of behavioral knowledge.
Another important aspect is guidance during autonomous
learning by having a knowledgeable other person give input
on the learner’s decisions [3], [4], essentially teaching them
crucial strategies to solve the task at hand.

Thomaz et al. [3] have explored fundamental properties of
guidance in an IRL task. Their goal was to find out in what
ways humans want to teach an agent and thus how the agent
should be set up to interpret the advice it gets in an optimal
way, so that eventually a person with no expert knowledge
of the inner workings or learning procedures of an agent
could support it in learning a previously unknown task in a
reasonable amount of time. The authors concluded that IRL
approaches should involve both feedback as well as guidance
channels to improve the learning process as much as possible
and to offer intuitive ways for trainers to teach agents.

Additionally, Taylor et al. [6] have discussed the viability of
a different form of advising to have an agent teaching another
one about a certain IRL task. Their chosen problem domain
was one of video games. By finding good teaching strategies
between agents, they expect to transfer this knowledge into
the construction of agents that can also teach humans effec-
tively about games after autonomously learning about them
themselves.

III. AGENT ADVISING APPROACHES

One critical limitation for trainer-agents when teaching other
agents is that they cannot give an unlimited amount of advice.
This limitation comes from the idea that human trainers have
indeed limited patience and attention when delivering advice
to others [3]. As an additional motivation for this limitation,
one could also argue that learner agents sometimes want to
figure out how to solve a task by themselves instead of just
being guided through the process with no perceived decision-
making on their part.

To model this limited advice, the notion of a budget,
available to the trainer, has been previously used [5]. The
budget is referred to as n and is a fixed number that denotes
how often the trainer-agent is allowed to intervene during a
learning episode of the learner to suggest a certain action.
This naturally leads to the question of how this budget is best
spent and what criteria the trainer should look at to determine
whether to help the learner with a particular choice or not.

In the following subsections, we describe three different
strategies for spending the teaching advice budget, namely,
early advising, importance advising, and mistake correcting
[6]. Additionally, we also describe a probabilistic advising
strategy which does not use an advice budget, nonetheless,
we use it as a baseline to compare the obtained results.

A. Probabilistic advising

Probabilistic advising does not use an advice budget, there-
fore, the trainer-agent can advise the learner at any time during
the learning process based on a fixed interaction probability I.
At each learner state, a random number is drawn to determine
whether the learner-agent is advised or not. Algorithm 1 shows
the probabilistic advising approach.

Algorithm 1 Probabilistic Advising
1) procedure ProbabilisticAdvising (π, I).
2) for each learner state s do
3) if rand(0, 1) < I then
4) Advice π(s)
5) end if
6) end for
7) end procedure

B. Early advising

Early advising simply lets the trainer-agent spend its budget
as soon as possible, i.e. in the first n states the learner-agent
encounters. The intuition behind this approach is that it might
be best to help the learner most in the beginning when it still
knows very little about the task. Algorithm 2 shows the early
advising approach.
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Algorithm 2 Early Advising
1) procedure EarlyAdvising (π, n).
2) for each learner state s do
3) if n > 0 then
4) n← n− 1
5) Advice π(s)
6) end if
7) end for
8) end procedure

C. Importance advising

Importance advising takes into account the fact that giving
advice may be more crucial in some situations than in others.
To that end, an importance function I(s) maps states to real
values and indicates how important it is to get the decision
about the action right in this particular state. Many implemen-
tations of the importance function have been suggested [6],
including measuring the maximal difference between Q-values
for the state as well as their variance and absolute deviation.
The latter two produce more consistent results, as they take
more Q-values into consideration than the two most extreme
ones. The trainer-agent then evaluates this function in every
state and, if it exceeds a certain threshold, decides to give
advice to the learner-agent in this step. Algorithm 3 shows
the importance advising approach.

Algorithm 3 Importance Advising
1) procedure ImportanceAdvising (π, n, t).
2) for each learner state s do
3) if n > 0 and I(s) ≥ t then
4) n← n− 1
5) Advice π(s)
6) end if
7) end for
8) end procedure

D. Mistake correcting

Mistake correcting differs from the other strategies as it
takes into account the decision that the learner-agent makes
autonomously before deciding whether to give advice or not.
The idea behind this is that a sparse advice budget should not
be spent when the learner is already making the right decision.
The downside of this is another layer of communication,
as learners would need to inform the trainer about their
decision first and wait for potential advice before carrying
out any actions. Advice is thus dependent both on the action
taken by the learner as well as the importance metric (both
preconditions need to be fulfilled). Algorithm 4 shows the
mistake correcting approach.

Algorithm 4 Mistake Correcting
1) procedure MistakeCorrecting (π, n, t).
2) for each learner state s do
3) Observe learners announced action a
4) if n > 0 and I(s) ≥ t and a 6= π(s) then
5) n← n− 1
6) Advice π(s)
7) end if
8) end for
9) end procedure

IV. ROBOTIC SCENARIO

To test the aforementioned advising approaches, we im-
plemented a domestic robot scenario proposed in [11]. The
scenario features a humanoid robot facing the task of cleaning
a table in front of it. The table is separated into the two sides
left and right, both of which are initially dirty. There is a
third location home and two objects: a cup, initially located
at either left or right, and a sponge, initially located at home.
Every state st is represented as a vector as follows:

st =< handObj , handPos, cupPos, sideCond[] >, (3)

where handObj is the object held in the robot’s hand if
any, handPos is the robot’s hand position, cupPos is the cup
position, i.e. left or right, and sideCondition[] a tuple which
indicates if each side of the table has been already cleaned or
not.

The robot’s arm, with which the cleaning task is to be
carried out, starts at the location home and can perform the
following actions: get to pick up an object at its current
location, drop to place the currently carried object, go left, go
right, and go home to move the arm to any of the locations,
clean to attempt to clean the current location, using the object
being carried, and abort to cancel the current learning episode
and return to the initial state.

After cleaning, the robot is meant to return the sponge to the
home position, which is the final goal state of the system. In
this task, the optimal sequence consists of 15 actions. Many of
the actions can lead to failure, like trying to clean something
with the cup in hand or trying to clean a location that the cup
is currently at. We refer to these states as failed-states which in
this context are the states from where it is not possible to reach
the goal state anymore. The reward for every state encountered
is −0.01 to discourage redundant behavior, with the exception
of the goal state and the failed-states, which reward 1 and −1
respectively.

In our scenario, first, an agent learns autonomously the
cleaning-table task and, afterward, this agent becomes the
trainer-agent delivering advice in some episodes to learner-
agents to speed up the learning process. The artificial trainer-
agent uses all the aforementioned advising approaches, i.e.
probabilistic advising, early advising, importance advising,
and mistake correcting.
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V. RESULTS AND DISCUSSION

Using the aforementioned robotic scenario, we trained an
agent autonomously on the cleaning-table task using SARSA
temporal-difference learning for 1000 episodes. The chosen
parameters were: learning rate α = 0.1, discount factor γ =
0.9, and an ε-greedy action selection with ε = 0.1. In a second
run, a trained agent is used to teach a new one using IRL. In
both RL and IRL approaches a set of 30 agents was used and
the obtained results were averaged.

Initially, we implemented the probabilistic advising ap-
proach. For every state encountered, the trainer-agent had a
probability of 0.3 of suggesting its own preferred action to
the learner-agent. The result was a drastically increased rate
of learning when compared to RL as can be seen in Fig.
2 where the learner-agent is able to collect greater reward
rapidly. In all the figures RL is shown in yellow and IRL in
red. To smooth the view of the results a convoluted gray line,
in a window of 30 values, is shown through the results. By
using a probabilistic advising approach, the trainer-agent ends
up giving advice around 3500 times during an entire run, so
roughly 3.5 times during a single episode. This leads to the
question whether this advice could be given in a more efficient
way so that, with a comparable number of interventions of the
trainer, the learner-agent could learn even faster than it already
does. To examine this, we implemented a fixed maximum
for the amount of advice that can be given during a single
episode as well as a number of strategies that the trainer could
employ to make the advice more effective. Specifically, we
experimented with early advising, importance advising and
mistake correcting as described earlier.

For the early advising strategy, we set the advice budget per
episode to 3, so that the trainer-agent would give advice for ex-
actly the first 3 steps of each episode and never afterward. This
adds up to exactly 3000 instances of advice-giving throughout
all episodes, slightly less than the amount that probabilistic
advising ended up giving. The average rewards obtained this
way are shown in Fig. 3. We can see that the learner-agent
actually learns much quicker initially, already acquiring an
average reward of roughly −0.3 after 400 episodes. On the
flip side, however, its behavior does not improve significantly
anymore even after 600 additional episodes, whereas the
probabilistic advice approach eventually reaches an average
reward of just over −0.2. This seems to be in line with the
philosophy of the early advising strategy: the learner is quickly
brought on the right track at the beginning of each episode,
but when exploring other solutions during later stages of the
episodes is left completely on its own. Nevertheless, this could
be useful for developing some kind of hybrid strategy, where
early advising is gradually transformed into a more far-sighted
approach as the number of episodes grows. Also, in the context
of a human teacher working with a learning robot, this strategy
is very easy and intuitive to apply.

The next strategy we implemented was importance advising.
We chose as importance function the mean absolute deviation
of Q-values of the state as observed by the trainer-agent [6]:

I(s) =
1

|A|

|A|∑
i=1

|Q(s, a)−Q(s, a)|. (4)

where |A| is the number of actions and Q(s, a) is the average
Q-value over the actions for the state s. This way, we tried
to focus advice on states that making mistakes in would
be especially bad and to let the learner-agent make less
important decisions by itself to preserve the budget. Finding
the right threshold for the importance function proved to be
non-trivial: if chosen too low, the strategy starts to closely
resemble early advising; if chosen too high, the total amount
of advice gets too low to allow for a fair comparison with
the other approaches. We ended up with a threshold of 0.02
for the absolute deviation of Q-values, which resulted in
approximately 3000 instances of the trainer giving advice
throughout all episodes. The resulting average rewards can be
seen in Fig. 4. Disappointingly, this approach does actually not
seem to perform any better than the probabilistic method with
a comparable amount of advice. The initial learning process
is not accelerated significantly, and the average reward after
1000 episodes of training is slightly lower. One reason for this
could be the fact that there is actually only the rather small
number of 53 regular states that are either not the goal state or
result in immediate failure, i.e. failed-states. This, combined
with the fact that the typical episode does not last very long,
could result in the trainer giving advice in the same states over
and over, even if the learner has already developed the correct
policy for those cases.

The natural answer to this problem would be only to give
advice to the learner-agent if that advice actually leads it to
perform a different action than what it otherwise would have
done. This mistake correcting approach is a direct extension
of importance advising: advice still only gets considered if
the current state is considered important by the trainer, but
now the learner’s decision also has to actually differ from the
trainer’s in order to prompt a reaction. Running the scenario as
a simulation, we are in a good position to be able to predict the
learner’s decision without actually having to let them perform
it first, which makes the implementation of this approach less
complicated. Fig. 5 shows average obtained rewards of agents
trained using this interactive approach. Not only is the initial
learning process of the agents significantly faster than with
probabilistic advising, the final result shows a great difference
to any of the other approaches as well. The average reward
achieved after 1000 episodes ends up at about 0.81, where
probabilistic advising would be at around −0.2 accumulated
reward per episode. In comparison, the theoretical maximum
reward per episode that can be achieved is 0.86, in an episode
of 15 actions.

By using the mistake correcting approach, the majority of
agents thus actually learns the optimal policy to fulfill the task.
We can see this effect in Fig. 6, where the average amount of
actions per episode is being shown. The missing averages from
the earlier stages of the learning process result from the fact
that all the agents ended up in failed-states for those episodes.
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Fig. 2. Collected reward by RL and IRL agents using the probabilistic
advising approach.

Fig. 3. Collected reward by RL and IRL agents using the early advising
approach.

The total amount of failures per episode for both the RL and
the IRL approach is shown in Fig. 7. As can be seen, the
IRL agents fail only very rarely after about 500 episodes and
use the optimal sequence of 15 actions in the vast majority
of the time when they succeed. The positive influence on the
quality of the learned policy using mistake correcting is further
confirmed when looking at the average amount of total advice
given which is only around 1800, so roughly 2 instances per
episode.

The additional power of having a mistake correcting mech-
anism certainly comes at a price. To reliably correct mistakes,
we need to either wait for them to actually happen, or we need
to know ahead of time what decision the learner-agent is going
to take. Both approaches pose problems when we look at a
real world application instead of a simulation, for instance, we
often cannot simply tell a robot to undo its last action and do

Fig. 4. Collected reward by RL and IRL agents using the importance advising
approach.

Fig. 5. Collected reward by RL and IRL agents using the mistake correcting
approach.

something else after it has already been performed, like when
it tries to clean the table with a cup and crushes it in the pro-
cess. Likewise, if we want to know the next action beforehand,
the robot needs to constantly communicate about its plans and
wait for possible feedback before actually executing anything.
This is theoretically possible, especially if the number of
possible actions is rather low and abstract. Nevertheless, for
more complex scenarios with more parametrized actions, this
could slow down the learning process considerably just by
executing fewer actions in the same amount of time. A pure
mistake correction strategy would probably not be feasible in
those cases, but the concept is definitely always worth thinking
about when looking at IRL tasks.

A possible solution for the strong constraints that the
mistake correction method poses on the learning procedure
would be to use predictive advising. This means that the
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Fig. 6. Average amount of taken steps for all successful episodes using the
mistake correcting approach.

Fig. 7. Total amount of failed agents per episode using the mistake correcting
approach.

learner-agent can always just execute steps without having to
wait for feedback and puts the responsibility of figuring out
when important wrong decisions would be taken solely on the
trainer-agent. It could be expected that the learning process
would be slower initially as the classifier for the learner’s
actions needs to be established with enough samples at first.
The possible quality also depends heavily on the exploration
policy of the learning agent, as random steps obviously cannot
be predicted and can influence the classifier negatively. In our
scenario, for example, the agents had a constant chance of
0.1 in every step of choosing a random action instead of the
perceived optimal one. This could hinder the potential of a
predictive advising approach, although it could work better
than probabilistic, early, or importance advising.

VI. CONCLUSION

We have implemented an extension of the general RL
approach to include the idea of a learning process that is
autonomous but assisted by a trainer giving continuous advice
throughout the learning process. We have shown advising
approaches that aim to find efficient implementations for this
concept and can be used in a real-world scenario. We have
taken a closer look at the idea of advice budgets and how to
efficiently act as a trainer when the amount of allowed feed-
back is limited. We implemented the strategies in a domestic
robot scenario and evaluated their performance. To choose
an appropriate advice strategy can be crucial in allowing
the IRL process to achieve much better results in a shorter
period of time. However, strategy-specific implications can
also introduce strong restrictions on the system as a whole.
Thus, the choice of the advising strategy should be carefully
considered in regards to application-specific properties. In our
scenario, the mistake correcting approach collected the greatest
amount of reward close to the theoretical maximum possible.
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