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CENTRAL

1. Motivation 2. Robotic Scenario
e Robots are able to autonomously learn new tasks. e In a reinforcement learning scenario, a robot learns how to clean a
e Problem: the time needed for a robot to acquire new skills. table. We detine objects, locations, and actions as follows:

o A parent-like trainer may speed up the learning process by using . .
Interactive Reinforcement Learning (IRL): Objects | Locations

sponge left
) goblet right
action a @ home

—_—i .
state s’ ﬂ Actions
reward r’ —= go <location>
~ Agentin Parent-like

@wronment states i get drop
clean abort

3. Approach

Human parent-like trainer advising learner-agents.
Audiovisual advice using recordings.

Instructions may be unclear or misunderstood.
Levels of interaction and consistency of feedback.

4. Experimental Results

e Experiments in a robotic IRL scenario.

e Different confidence levels to verify whether small confidence
values benetit the learning scenario.

e We considered \; > 0,,;, with 0,,;, being the minimum confi-
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5. Conclusions

o Interactive feedback provides advantages over RL, but parent-
like trainers need to give good feedback.

o Integrated advice leads to better performance in terms of accu-
mulated reward and required learning episodes.
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