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Abstract Robotic systems are more present in our soci-
ety everyday. In human-robot environments, it is crucial
that end-users may correctly understand their robotic
team-partners, in order to collaboratively complete a
task. To increase action understanding, users demand
more explainability about the decisions by the robot in
particular situations. Recently, explainable robotic sys-
tems have emerged as an alternative focused not only on
completing a task satisfactorily, but also on justifying,
in a human-like manner, the reasons that lead to making
a decision. In reinforcement learning scenarios, a great
effort has been focused on providing explanations us-
ing data-driven approaches, particularly from the visual
input modality in deep learning-based systems. In this
work, we focus rather on the decision-making process
of reinforcement learning agents performing a task in
a robotic scenario. Experimental results are obtained
using 3 different set-ups, namely, a deterministic naviga-
tion task, a stochastic navigation task, and a continuous
visual-based sorting object task. As a way to explain the
goal-driven robot’s actions, we use the probability of suc-
cess computed by three different proposed approaches:
memory-based, learning-based, and introspection-based.
The difference between these approaches is the amount
of memory required to compute or estimate the prob-
ability of success as well as the kind of reinforcement
learning representation where they could be used. In
this regard, we use the memory-based approach as a
baseline since it is obtained directly from the agent’s ob-
servations. When comparing the learning-based and the
introspection-based approaches to this baseline, both
are found to be suitable alternatives to compute the
probability of success, obtaining high levels of similarity
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when compared using both the Pearson’s correlation
and the mean squared error.
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1 Introduction

Explainable robotic systems have become an interesting
field of research since they give robots the ability to
explain their behavior to the human counterpart [1, 2].
One of the main benefits of explainability is to increase
the trust in Human-Robot Interaction (HRI) scenar-
ios [3, 4].

To get robots into our daily-life environments, an
explainable robotic system should provide clear explana-
tions specially focused on non-expert end-users in order
to understand the robot’s decisions [5]. Often, such ex-
planations, given by robotic systems, have been focused
on interpreting the agent’s decision based on its per-
ception of the environment [6, 7]. Whereas, little work
has provided explanations of how the action selected is
expected to help it to achieve its goal [8]. For instance,
the use of the visual sensory modality often attempts to
understand how a deep neural network makes decisions
considering a visual state representation. In general,
prior work has been focused on state-based explana-
tions [9, 10, 11], i.e., given explanations take the form
of: ‘I chose action A because of this feature F of the
state’. Nevertheless, explanations from a goal-oriented
perspective have so far been less addressed and, there-
fore, there exists a gap between explaining the robot’s
behavior from state features and the help to achieve its
aims [1].

In this work, we propose two robotic scenarios where
the robot has to learn a task using reinforcement learning
(RL) [12]. The aim of RL is to provide an autonomous
agent with the ability to learn a new skill by interacting
with the environment. While RL has been shown to be
an effective learning approach in diverse areas such as
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human cognition [13, 14], developmental robotics [15,
16, 17], and games [18, 19, 20], among others, an open
issue is the lack of a mechanism that allows the agent to
clearly communicate the reasons why it chooses certain
actions given particular goals [8]. Therefore, it is not easy
for a person to entrust important tasks to an AI-based
system (e.g. robots) that cannot justify its reasoning [21].
In this regard, our goal-driven approach is concerned
with the outcomes of each decision, e.g., an explanation
may take the form of: ‘action A1 gives an 85% chance
of success the task compared to 38% for action A2’.

When interacting with the environment, an RL agent
will learn a policy to decide which action to take from a
certain state. In value-based RL methods the policy uses
Q-values to determine the course of actions to follow.
The Q-values represent the value function in reinforce-
ment learning. The value function is an estimation of
possible future collected reward starting from an specific
situation and following an specific policy. Therefore in
practise, the Q-values used to choose what action to
perform next. However, the Q-values are not necessarily
meaningful in the problem domain, but rather in the
reward function domain [22]. Hence, they do not allow
the robot to explain its behavior in a simple manner
to a person with no knowledge about RL or machine
learning techniques. It is clearly not acceptable for the
agent to provide explanations to non-expert end-users
such as: ‘I choose action A1 because it maximizes future
collected reward’ or ‘I choose action A2 because it is the
next one following the optimal policy’ [23].

In this paper, we propose three different approaches
that allow a learning agent to explain, using a user-
friendly concept, the decision of selecting an action over
the other possible ones. In these approaches, explana-
tions are given using the probability of success, i.e., the
probability of accomplishing the task following partic-
ular criteria related to the scenario. Although we are
not automatically generating explanations yet, using the
probability of success an RL agent might next explain
its behavior not only in terms of Q-values or the proba-
bility of selecting an action, but rather in terms of the
necessity to complete the intended task. For instance,
using a Q-value, an agent might provide an explanation
as: ‘I decided to go left because the Q-value associated
with the action left in the current state is −0.181’, which
could be the highest Q-value in the reward function do-
main but is pointless for a non-expert user. Whereas
using the probability of success, an agent might give
an explanation as: ‘I chose to go left because that has
a 73.6% probability of reaching the goal successfully’,
which is much more understandable for a non-expert
end-user.

The proposed methods differ in their approach to
determining the probability of success. Each approach
trades off accuracy against space complexity (under-
stood as the memory required for each method) or appli-
cable problem domain. This paper illustrates empirically
the benefits and shortcomings of each approach. We have
tested our approaches in 3 simulated robotic scenarios.
The first 2 scenarios consists of a robot navigation task
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Fig. 1: The explainable reinforcement learning frame-
work. The environment’s response is a new state st+1

and sometimes a reward rt+1. During and after the learn-
ing process, the agent is able to explain its behavior to
the end-users, which leads to an increased level of action
understanding.

where we have used both deterministic and stochastic
state transitions. The third scenario consists of a sorting
object task where we have used continuous visual inputs
in order to test how the introspection-based approach
scales up to more complex scenarios.

The first method uses a memory-based explainable
RL approach, which we have previously introduced [24]
to compute the probability of success in both bounded
and unbounded grid-world scenarios. This approach
uses a high space complexity, but provides a realistic
probability of success since it is obtained directly from
the actual agent’s observations. The memory-based ap-
proach is used as a baseline to verify the accuracy of
the other two estimation methods developed in this
paper. The new approaches in this paper include a
learning-based and an introspection-based method. We
hypothesize they significantly reduce the space complex-
ity while obtaining similar results. This reduction in
space complexity would also allow these methods to be
better suited for domains requiring a continuous state
representation. The learning-based method allows the
agent to learn the probability of success while the Q-
values are learned. The introspection-based method uses
a logarithmic transformation to compute the probability
of success directly from the Q-values.

2 Explainable reinforcement learning in
robotics

2.1 Reinforcement learning

RL is studied as a decision-making mechanism in both
cognitive and artificial agents [25]. Unlike other learning
techniques, RL does not include supervision nor instruc-
tion but rather the agent is able to sense changes in
the environment due to carried out actions. Hence, new
states and numeric rewards are observed by the agent
every time-step after performing an action. In other
words, an agent must learn from its own experience [26].
The usual interactive loop between an RL agent and
its environment is depicted on the right-hand side of
Fig. 1, in the interaction between the agent and the
environment, where it is possible to observe that the
robot performs an action at from the state st to reach
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a new state st+1 and a reward signal rt+1 as a response
from the environment.

An RL agent must learn a policy π : S → A, with S
being a set of states and A a set of actions available from
S. By learning a policy π, the agent looks for the highest
possible cumulative future reward starting from a state
st [12]. The optimal policy and the optimal action-value
function are referred to as π∗ and q∗ respectively.

The optimal action-value function is defined as
q∗(s, a) = max

π
qπ(s, a) and solved using the Bellman

optimality equation for q∗, as shown in Eq. (1).

q∗(st, at) =
∑
st+1

p(st+1|st, at)[r(st, at, st+1) +

γmax
at+1

q∗(st+1, at+1)] (1)

where st represents the agent’s current state, at the
performed action, r is the reward signal received by the
agent after performing at from st to reach the state
st+1, and at+1 is a possible action from st+1. Moreover,
p is the probability of reaching st+1 given the agent’s
current state st and the taken action at.

To solve Eq. 1, an alternative is to use the on-policy
method SARSA [27]. SARSA is a temporal-difference
learning method which iteratively updates the state-
action values Q(s, a) using the Eq. (2) as follows:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−
Q(st, at)] (2)

Thus, the optimal action-value function maps states
to actions to maximize the future reward (r) over a time
(t) as shown in Eq. (3). In the equation, Eπ[] denotes the
expected value given that the agent follows policy π. In
continuous representations, an approximation function
(e.g., implemented by deep neural networks) allows an
agent to work with high-dimensional observation spaces,
such as pixels of an image [28].

Q∗(st, at) = max(Eπ[rt + γrt+1 + γ2rt+2 + ...

|st = s, at = a, π]) (3)

2.2 Explainable reinforcement learning

Machine learning techniques are getting more attention
everyday in different areas of our daily life. Applica-
tions in fields such as robotics, autonomous driving cars,
assistive companions, video games, among others are
constantly shown in the media [29]. There are different
alternatives to model intelligent agents, e.g., by using
phenomenological (white-box) models, empirical (black-
box) models, or hybrid (grey-box) models [30, 31]. Ex-
plainable artificial intelligence (XAI) has emerged as a
prominent research area that aims to provide black-box
AI-based systems the ability to give human-like and user-
friendly explanations to non-expert end-users [32, 33].
XAI research is motivated by the need to provide trans-
parent decision-making that people can trust and ac-
cept [34].

Up to now, there has been considerable effort to
provide agents with instruments to explain their actions
to end-users. Nevertheless, in explainable reinforcement
learning (XRL), most works have addressed explainabil-
ity using technical explanations [35]. For instance, [36]
presented the programmatically interpretable reinforce-
ment learning framework which works only with sym-
bolic inputs considering deterministic policies, but not
covering stochastic policies that are commonly pre-sent
in real-world scenarios. Another approach [37] included
hierarchical and interpretable skill acquisition. In this ap-
proach, the tasks are decomposed in a hierarchical plan
with understandable actions. Moreover, [38] introduced
a hybrid approach for interpretable policies mixing RL
with genetic programming. The approach explains the
policies using equations instead of more human-friendly
explanations. In [22] the drQ method was presented,
an XRL approach based on reward decomposition [39].
Using a variant of Q-learning, the method decomposed
the action-values to better understand the agent’s action
selection. However, the proposed approach focused on
RL practitioners and does not look for end-user expla-
nations.

Additionally, in [6] saliency maps are used to ex-
plain the agent’s decisions. In this work, a game sce-
nario is used to provide visual explanations with deep
RL. In [40] an explainable recommendation system is
presented within an RL scheme. Inspired by cognitive
science, [41] introduced a game scenario providing causal
explanations determined by causal models. However, the
particular causal model has to be known in advance for
the specific domain. Recently, [42] presented a distal
explanation model analyzing opportunity chains and
counterfactuals by using decision trees and causal mod-
els. As in the previous case, the main drawback is the
need for a previously known causal model which is not
possible in large-domain problems. In [43] a conceptual
framework for XRL is introduced based on the causal
explanation network model representing explanations
of people’s behavior [44]. The proposed casual XRL
framework includes a simplified version using the more
relevant components for zero-order explanations [33].
While surveying the main XRL approaches, this work
also brings insights about the future development of the
XRL field, such as the explanation of goals.

Another closely related field is explainable planning,
whose primary goal is to help end-users to better un-
derstand the plan produced by a planner [34]. In [45],
Sukkerd et al. propose a multi-objective probabilistic
planner for a simple robot navigation task. They pro-
vide verbal explanations of quality-attribute objectives
and properties, however, these rely on assumptions
about the preference structure on quality attributes.

2.3 Explainable robotic systems

As robots are giving their first steps into domestic scenar-
ios, they are more likely to work with humans in teams.
Therefore, if a robot has the ability to explain its behav-
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ior to non-expert users, this may lead to an increase in
the human’s understanding of the robot’s actions [46]
as shown within Fig. 1. In this regard, some works have
demonstrated explanations to be an effective way of in-
creasing understanding and trust in HRI scenarios. For
instance, Want et al. [4] proposed a domain-independent
approach to generate explanations and measure their
impact in trust with behavioral data from a simulated
human-robot team task. Their experiments showed that
using explanations improved transparency, trust and
team performance. Lomas et al. [47] developed a proto-
type system to answer people’s questions about robot
actions. They assumed the robot uses a cost map-based
planner for low-level actions and a finite state machine
high-level planner to respond to specific questions. Yang
et al. [48] presented a dual-task environment, where
they treated the trust as an evolving variable, in terms
of the user experience.

Furthermore, Sander et al. [49] proposed to use dif-
ferent modalities to evaluate the effect on transparency
in an HRI scenario. They also varied the level of in-
formation provided by the robot to the human and
measured the understanding responses. In their study,
participants reported higher understanding levels when
the level of information was constant, however, no sig-
nificant differences were found when using a different
communication modality. Haspiel et al. [50] carried out
a study about the importance of timing when giving ex-
planations. They used four different automated vehicle
driving conditions, namely, no explanation, explana-
tion seven seconds before an action, one second before
an action, and seven seconds after an action. They found
that earlier explanations lead to higher understanding
by end-users.

In HRI environments, explainable agency [51, 1] has
been used to refer to robots explaining the reasons or
motivations of the underlying decision-making process.
For instance, in [52] an HRI environment was presented
where users informed that the robot was more intelli-
gent, helpful, and useful when giving explanations about
its behavior. In [53] an explainability framework was
presented using a three-level analysis from the agent’s
transition history. Furthermore, an extension included
a study of the agent’s capabilities and limitations [54].
Finally, [55] proposed an episodic memory to save state
transitions during the learning process, however, the
approach was not implemented.

3 Goal-driven explanations

As discussed previously, the actions taken by a robot
may be explained using technical terms, for instance,
comparing Q-values or algorithmically speaking. How-
ever, this is not possible to do it successfully if the
explanation is addressed to people with no technical
knowledge about algorithms or machine learning [22].
In this regard, this work looks for explanations that can
be understood by any person interacting with a robot,
using terminology similar to human interaction.

On several occasions, intelligent agents and robots
deployed in domestic-like environments have to inter-
act with non-expert end-users. An important current
research challenge is to improve the ability a robot has
to communicate explanations about intentions and per-
formed actions to interacting users [29], especially in
case of failure [56].

As aforementioned, although there is increasing lit-
erature in different XAI subfields, such as explainable
planners, interpretable RL, or explainable agency, just a
few works are addressing the XRL challenge in robotic
scenarios. In some of those works, although they are in
a certain way focused on XRL, they have different aims
than ours, e.g., to explain the learning process using
saliency maps from a computational vision perspective,
especially when using deep reinforcement learning as
in [6, 57]. In this paper, we focus on explaining goal-
oriented decisions to provide an understanding to the
user of what motivates the robot’s specific actions from
different states, taking into account the problem domain.

In HRI scenarios, there are many questions which
could arise from a non-expert user when interacting
with a robot. Such questions include what, why, why not,
what if, how to [58]. However, from a non-expert end-user
perspective, we can consider the most relevant questions
as to ’why?’ and ’why not?’ [41], e.g., ’why did the
agent perform action a from state s’? Hence, we focus
this approach on answering these kinds of questions
using an understandable domain language. Thus, our
approach explains how the agent’s selected action is the
preferred choice based on its likelihood of achieving its
goal. This is achieved by determining the probability
of success. Once the probability of reaching the final
state is determined the agent will be able to provide
the end-user an understandable explanation of why one
action is preferred over others when in a particular state.

In the following subsections, we present different
approaches aiming to explain why an agent selects an
action in a specific situation given an specific goal. As
discussed, we focus our analysis on the probability of
success as a way to support the agent’s decision as this
will be more intuitive for a non-expert user than an ex-
planation based directly on the Q-values. We introduce
three different approaches to estimate the probability of
success. The memory-based approach develops a tran-
sition network of the domain during learning and has
been previously presented by us applied to a grid-world
scenario [24]; whereas the learning-based approach uses
a so-called P-value learned in parallel with the Q-value.
The introspection-based approach proposes a model of
self-examination to relate the agent’s own motivations
and actions directly to the probability of success using
a numerical transformation of the Q-values. Therefore,
in this work, we extend our previous approach adding
two additional alternatives to compute the probability
of success with the aim to use fewer memory resources
and to be usable in non-deterministic, continuous, and
deep RL domains.
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Algorithm 1 Explainable reinforcement learning ap-
proach to compute the probability of success using the
memory-based approach.

1: Initialize Q(s, a), Tt, Ts, Ps
2: for each episode do
3: Initialize TList[], st
4: Choose an action at from st
5: repeat
6: Take action at
7: Save state-action transition TList.add(st, at)
8: Tt[st][at]← Tt[st][at] + 1
9: Observe reward rt+1 and next state st+1

10: Choose next action at+1 using softmax action ......
.............. selection method

11: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1).
............................−Q(st, at)]

12: st ← st+1; at ← at+1

13: until st is terminal (goal or aversive state)
14: if st is goal state then
15: for each s,a ∈ TList do
16: Ts[s][a]← Ts[s][a] + 1
17: end for
18: end if
19: Compute Ps ← Ts/Tt
20: end for

3.1 Memory-based approach

In [24], we proposed a memory-based explainable rein-
forcement learning approach to compute the probabil-
ity of success Ps using an RL agent with an episodic
memory as suggested in [55]. The episodic memory was
implemented using a list (TList) to save all the state-
action pairs transited by the agent through the learning
process.

Using the total number of transitions Tt and the
number of transitions in a success sequence Ts, we com-
pute the probability of success Ps. In order to obtain
Tt and Ts, the transitions saved in the episodic memory
are used, represented as state-action pairs within the
list TList. Therefore, when the robot reaches the goal
position, the path followed determines the probability
Ps ← Ts/Tt.

The proposed algorithm implements the on-policy
method SARSA [27] with softmax action selection. Al-
gorithm 1 shows the memory-based approach to train
the robot using the episodic memory. Particularly, line 7
saves into the episodic memory the transited state-action
pairs, and in line 19 the final probabilities of success Ps
is computed after each learning episode.

It has been previously shown that an agent using this
memory-based approach is able to explain its behavior
using the probability of success in an understandable
manner for non-expert end-users at any moment during
its operation [24]. However, in this approach, the use
of memory increases rapidly and the use of resources is
∼ O(s× a× l×n), where s is the number of states, a is
the number of actions per state, l the average length of
the episodes, and n the number of episodes. Therefore,
this approach is not suitable to high/continuous state or
action situations, such as real-world robotics scenarios.

3.2 Learning-based approach

Although to compute the probability of success by
means of the episodic memory is possible and has previ-
ously lead to good results, one of the main problems is
the increasing amount of memory needed as the problem
dimensionality enlarges. In this regard, an alternative
to explain the behavior in terms of the probability of
success is by learning it through the agent’s learning
process.

To learn the probability of success, we propose to
maintain an additional set of state-action values. There-
fore, learning in parallel the probability of success using
a state-action transition table is also an alternative to
explain the behavior to non-expert users. We refer to
this table as a P-table and as P-value to an individual
value inside the table. While using the memory-based ap-
proach the episodic memory could increase unrestricted,
when using a P-table, as proposed in this learning-based
approach, the additional memory needed is fixed to the
size of the P-table, i.e., ∼ O(s × a). This represents
a doubling of the memory requirements of RL which
implies a constant increase to the base algorithm and is
therefore negligible.

Similarly to Q-values, to learn the P-values implies
to update the estimations after each performed action.
In our approach, we employ the same learning rate α for
both values, however, the main change with respect to
the implemented temporal-difference algorithm is that
we do not use a reduced discount factor γ, or in other
words, we set it to γ = 1 to consider the total sum of
future rewards. From the discount reward perspective,
to use γ = 1 does not represent an issue to solve the
underlying optimization problem since the Q-values are
used for learning purposes, which indeed use a discount
factor γ to guarantee the convergence.

As using the discount factor γ = 1, the agent asso-
ciates each action based on the total sum of all future
rewards, nevertheless, we want to learn a P-value as a
probability of success ∈ [0, 1]. Therefore, we do not use
the reward rt+1 to update the P-table, instead, we use
a success flag ϕt+1 which consists of a value equal to 0
to indicate that the task is being failed, or a value equal
to 1 to indicate that the task has been completed. In
such a way, the agent learns the probability of success
considering the sum of the probabilities to finalize the
task in the future.

The update of the P-values is performed according
to Eq. (4) as follows:

P(st, at)← P(st, at) + α[ϕt+1 + P(st+1, at+1)−
P(st, at)] (4)

where at is the taken action at the state st. P(st, at)
and P(st+1, at+1) are the probability of success values
considering the state and the action at timestep t and
t+ 1 respectively. Moreover, α is the learning rate and
ϕt+1 is the success flag used to indicate if the task has
been completed or not. Note that γ is not present in Eq.
(4) since its value is set to 1.
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Algorithm 2 Explainable reinforcement learning ap-
proach to compute the probability of success using the
learning-based approach.

1: Initialize Q(s, a), P(st, at)
2: for each episode do
3: Initialize st
4: Choose an action at from st
5: repeat
6: Take action at
7: Observe reward rt+1 and next state st+1

8: Choose next action at+1 using softmax action ......
.............. selection method

9: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1).
............................−Q(st, at)]

10: P(st, at) ← P(st, at) + α[ϕt+1 + P(st+1, at+1).
.............................−P(st, at)]

11: st ← st+1; at ← at+1

12: until st is terminal (goal or aversive state)
13: end for

Algorithm 2 shows the learning-based approach. Par-
ticularly, in line 10 the P-table is updated. While the
P-table and Q-table share a similar structure and learn-
ing mechanism, their roles are quite different with the
Q-values driving the agent’s policy while the P-values
are used for explanatory purposes. Separating the role
of these values allows the use of ϕt and rt terms best
suited to each purpose. Therefore, ϕt might be sparse
with non-zero values only when the task is successfully
completed, whereas rt might be free to take on any form,
including incorporation of reward shaping terms [59]
which might be difficult to interpret for a non-expert.

The learning method described in Eq. (4) suits only
for discrete representations. However, the same learning-
based approach can be extended to continuous and
larger discrete scenarios by using a function approxi-
mators, such as neural networks. As usual, we would
need a neural approximator to learn the Q-values and
an additional neural network to learn the P-values in
parallel.

3.3 Introspection-based approach

Even though the learning-based approach previously
presented represents an improvement when compared
to the memory-based approach, in terms of using fewer
memory resources, it still requires some additional mem-
ory to keep the P-values updated. Moreover, during the
learning process, time is also needed for computations
and for learning episodes in order to obtain a better
estimation.

Therefore, we also look for an approach that allows
us to estimate the probability of success P̂s directly
from the Q-values using a numerical transformation. As
pointed out, the idea of this approach is to relate the
Q-values to the probability of success as an introspective
means of the agent’s self-motivation. In this regard, this
approach is more efficient in terms of used memory and
time required for the learning, i.e., since it is computed
directly from the Q-values, it does not require additional
memory leading to the use of resources of ∼ O(1).

Bearing in mind the temporal difference learning ap-
proach shown in Eq. (2), the optimal Q-values represent
possible future reward, therefore, they are expressed in
the reward function domain. Thus, if an agent reaches
a terminal state in an episodic task obtaining a reward
RT , the associated Q-value approximates this reward. In
a simplified manner, we can consider any Q-value Q(s, a)
as the terminal reward RT multiplied by the times the
discount factor γ is applied, as Q(s, a) ≈ RT · γn. Using
this derivation, when Q(s, a) converges to the true value,
we can compute how far away the agent is from obtain-
ing the total reward for any state, using directly the
Q-values. Therefore, using the previous argument, we
have computed the estimated distance n to the reward,
as shown in Eq. (5):

n ≈ logγ
Q(s, a)

RT
(5)

where Q(s, a) is the Q-value, RT the reward obtained
when the task is completed successfully, and n is the
estimated distance, in number of actions, to the reward.

After computing the estimated distance n to obtain
a reward, we use this value as the base to estimate an
estimated probability of success P̂s. Using a constant
transformation, we weight the estimated distance n by

1
2·logγ10 + 1. Therefore, what we are actually performing

is a logarithmic base transformation to estimate the
probability of success P̂s as shown in Eq. (6) and Eq. (7).
In our approach, we also take into account stochastic
transitions represented by the σ parameter. We will
discuss this parameter further in the following section.

P̂s ≈ (1− σ) ·
(

n

2 · logγ10
+ 1

)
(6)

P̂s ≈ (1− σ) ·
(

1

2
· log10

Q(s, a)

RT
+ 1

)
(7)

This transformation is carried out in order to shape
the probability of success curve as a common base loga-
rithm (base 10) that fits the behavior of both previously
introduced approaches. Moreover, we shift the curve to
a region where the probability values are plausible by
adding 1 and multiplying by 1/2. Finally, in order to
restrict the value of the probability of success, consid-
ering P̂s ∈ [0, 1], we compute the rectification shown in
Eq. (8), which basically consists of assigning a value of
0 when the result is less than that, or 1 when the result
is greater than 1.

P̂s ≈
[
(1− σ) ·

(
1

2
· log10

Q∗(s, a)

RT
+ 1

)]P̂s≤1
P̂s≥0

(8)

In algorithm 3, the estimated probability of success
P̂s is computed at the end in line 12. Although algo-
rithms 1, 2, and 3 share a common structure based on
the temporal-difference learning, we decided to show
them independently since they do differ in the way they
compute the probability of success inside the SARSA
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Algorithm 3 Explainable reinforcement learning ap-
proach to compute the probability of success using the
introspection-based approach.

1: Initialize Q(s, a), P̂s
2: for each episode do
3: Initialize st
4: Choose an action at from st
5: repeat
6: Take action at
7: Observe reward rt+1 and next state st+1

8: Choose next action at+1 using softmax action ......
.............. selection method

9: Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1).
............................−Q(st, at)]

10: st ← st+1; at ← at+1

11: until st is terminal (goal or aversive state)

12: P̂s ≈
[
(1− σ) ·

(
1
2
· log10Q(st,at)

RT
+ 1
)]P̂s≤1

P̂s≥0

13: end for

Fig. 2: The simulated robot navigation task. The initial
position is in the room to the left, the so-called room
0. The goal is to reach the table in room 5 to the right.
From the initial position, two different paths are possible
to reach the goal. In the intermediate rooms, namely
rooms 1, 2, 3, and 4, the agent may leave the level, and
if so, it cannot get back and needs to restart a new
learning episode (thereby failing to complete the task).

method. The three approaches introduced in this section
are tested experimentally in a simulated robotic set-up
described in the following section.

4 Experimental set-ups

In this section, we describe the experimental scenarios
used to test the proposed approaches. We have designed
3 domestic scenarios using the CoppeliaSim robot simu-
lator [60]. The first 2 experiments use a discrete robot
navigation task including deterministic and stochastic
transitions. In this scenario, a humanoid robot needs to
reach a goal position by moving across different rooms
from an initial position. The third experiment is a con-
tinuous visual-based sorting task. In this scenario, a
robotic arm has to sort different objects with different
shape and color using raw images from an RGB camera
as inputs.

4.1 Robot navigation task

The first scenario used in this work is an episodic robot
task in which the transitions can be modeled as a graph,
and therefore the Q-values can be approximated using
a tabular method. The scenario consists of a simulated
robot navigation task comprising of six rooms and three
possible actions to perform from each room. The sim-
ulated scenario is shown in Fig. 2. Furthermore, two
variations are considered for the proposed scenario: de-
terministic and stochastic transitions.

In the proposed scenario, a mobile robot has to learn
how to navigate from a fixed initial position (room 0)
through different rooms considering two possible paths
to find the table within the goal position (room 5).
Moreover, it is also possible to observe that every room
in the middle of the paths, i.e., from room 1 to room 4,
has an exit that leaves the level. These transitions are
treated as leading to an aversive region and, therefore,
once any of these exits have been taken, the robot is
unable to come back and needs to stop the current
learning episode and restart a new one from the initial
position. In the scenario, the agent starts from the initial
position and may transit two symmetric paths towards
the goal position.

We have defined six states corresponding to the
six rooms and three possible actions from each state.
Actions are defined taking into account the robot’s per-
spective. The possible actions are (i) aL, move through
the left door, (ii) aR, move through the right door, and
(iii) aS , stay in the same room. These transitions are,
in principle, all deterministic. Nevertheless, in some sit-
uations, transitions may not be deterministic and may
include a certain level of stochasticity or uncertainty,
as in partially observable problems, or also sometimes
due to noisy sensors, for instance. Therefore, taking
into consideration these situations, we have also used a
parameter σ ∈ [0, 1] to include stochastic transitions.

When stochastic transitions are used, the next state
reached, as a result of performing an action, is any of
the possible future states from where the action has
been performed. For instance, if the action aL is being
performed from the state s0, the agent is expected to
be in the state s1 once the action is completed, taking
into account deterministic transitions (σ = 0). However,
considering stochasticity (i.e., σ > 0), there is also a
probability the agent could finish in the state s0 or the
state s2 since these two are also reachable from the
state s0 (by performing the action aS and the action aR
respectively).

For the learning process, the reward function re-
turns a positive reward of 1 when the agent reaches
the final state and a negative reward of −1 in case the
agent reaches an aversive region, i.e., when it leaves the
scenario. Eq. 9 shows the reward function for s.

r(s) =

{
1 if s is the final state
−1 if s is an aversive state

(9)

Although we are aware that this scenario is rather
simple from the learning perspective, and thus manage-
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Fig. 3: The simulated sorting object task. The objects
are initially located on the central table. The robot arm
must grab each object and sort them in the lateral tables.
The task is completed once the robot has sorted out all
the objects. Moreover, if an object is wrongly sorted the
learning episode finishes and the task is restarted.

able by an RL agent, in this work we are focusing on
giving a basis for goal-oriented explanations regarding
fundamental RL aspects using the proposed methods.
In this regard, this robot navigation task allows us
to obtain valuable initial insights about the behavior
of the different proposed approaches and their equiva-
lence. Moreover, following we propose a second scenario
in which later we test the approach consuming less re-
sources in order to prove the scalability to more complex
scenarios.

4.2 Sorting object task

The second scenario used in this work is a continuous
visual-based sorting object task [61]. An alternative in
continuous states is to approximate the agent’s state
directly from raw images. For instance, deep RL uses
the same RL structure adding a deep neural network in
order to approximate the Q-values from raw inputs.

In this scenario, a robotic arm has to sort 6 different
objects. The objects are represented by geometric figures
with different colors. The sorting task involves moving
the objects from a central table to two other tables
located to each side, one for each class of object. Initially,
the objects are placed in the central table on random
positions. Figure 3 illustrates the sorting object task
scenario.

The robot is allowed to perform four different actions.
The possible actions are (i) grab an object, (ii) drop an
object, (iii) move right, and (iv) move left.

To grab and drop an object, the robot has a suction
pad that is activated or deactivated respectively. Move
right or left, it moves the robot’s arm to the indicated
position from the robot’s perspective. When moving,
the suction pad can either have an object or be free.
The actions to perform are decided by a neural network

Fig. 4: The robot navigation task in a real-world sce-
nario. In this setup, the robot interacts with an end-user.
The robot provides different kinds of explanations using
either the probability of success or a Q-value. End-users
can evaluate each received explanation in terms of use-
fulness to explain the robot’s behavior.

by approximating the Q-values, while all the low-level
control commands to produce the robot movements are
computed using inverse kinematics.

The robot’s state is represented with raw images
containing 64 × 64 pixels obtained directly from an
RGB camera. The raw image is presented to the neural
network previously normalized as ∈ [0, 1].

The reward function is defined also considering sub-
goals, i.e., the robot receives a reward for each object
correctly sorted. Moreover, when all the objects are
properly sorted, the task is completed and an additional
reward is received. If an object is wrongly sorted, the
training episode finishes and a negative reward is ob-
tained. Finally, after 18 learning time-steps (the minimal
number of steps to complete the task), the robot receives
an additional small negative reward in order to encour-
age it to finish the task as soon as possible. The reward
function is shown following:

r(s) =


1 if all the objects are sorted

0.4 if a single object is sorted
−1 if an object is incorrectly sorted

−0.01 if steps > 18

(10)

Thus, if the agent correctly finalizes the task in 18
steps, it receives a total reward of 3, i.e., 0.4 for each of
the first 5 objects sorted, and an additional reward of 1
due to the sixth and final object.

4.3 Real-world proof of concept

Although this work has been primarily developed in
simulated scenarios, we have also run a simple real-world
test in order to assess the application with end-users.
We have replicated the robot navigation task described
in Section 4.1 in a real-world scenario and we have
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tested our approach with an end-user. The replicated
real-world scenario is shown in Fig. 4.

Using this scenario, we have carried out 2 different
situations. In the first situation, the robot performed
an action from the initial state (room 0). In the second
situation, the robot performed an action that led it
to the goal position (room 5). In both situations, the
end-user received an explanation built from either the
probability of success or the Q-values.

5 Experimental results

In this section, we describe the results obtained when us-
ing the proposed explainable approaches in the scenarios
described in the last section. During the robot naviga-
tion task, the experiments have been performed using
the on-policy learning algorithm SARSA, as shown in
Eq. 2, and the softmax action selection method, where

a =
eQ(st,a)/τ∑

ai∈A e
Q(st,ai)/τ

, where st is the current agent’s

state, ai an action in the set A of available actions, τ is
the temperature parameter, and e the exponential func-
tion. A total of 20 agents have been trained and thus, the
plots in this work depict average results. The parameters
used for the training are: learning rate α = 0.3, discount
factor γ = 0.9, and softmax temperature τ = 0.25.

During the sorting object task, a continuous visual
representation is used for the agent’s state. Therefore, a
function approximator for Q(st, at) (as shown in Eq. (3))
and experience replay [62] are introduced for generaliza-
tion during the learning process. We implemented the
Deep Q-learning algorithm using previous experiences
to train a convolutional neural network (CNN) as an
approximator for Q-values. The CNN architecture com-
prises an input of 64 × 64 pixels in RGB channels, 3
convolutional layers (8× 8 with 4 filters, 4× 4 with 8
filter, and 2× 2 with 16 filters, respectively). Each con-
volutional layer is followed by a 2× 2 max-pooling layer.
Finally, there is a flattened layer and a fully connected
layer with 256 neurons. The output of the network in-
cludes a softmax function with 4 neurons to represent
the Q-value of each possible action. The experience re-
play technique uses a memory M containing 128 tuples
that include < st, at, rt, st+1 >. Initially, 1000 random
actions are performed as a pretraining in order to pop-
ulate the memory M . Afterwards, the agent learning
is carried out. In this experiment, due to the higher
learning complexity, only 10 agents have been trained,
however as mentioned, plots still show average results.
The parameters used for the training are: ε-greedy ac-
tion selection with initial ε = 1 and ε decay rate =
0.9995, learning rate α = 0.001, and discount factor
γ = 0.9. Although the training parameters used in these
experiments are not much relevant in terms of explain-
ability, we include them for reference. Certainly, they
do affect the agent’s learning speed, nevertheless, we fo-
cus on better understanding and explaining the agent’s
decisions.

5.1 Deterministic robot navigation task

Initially, we have tested an RL agent moving across the
rooms considering deterministic transitions, i.e., per-
forming an action a from the state si to state sj always
reaching the intended state sj with probability equal
to 1, or σ = 0. For the analysis, following we plot the
obtained Q-values, estimated distance n to task com-
pletion, and probabilities of success using the three
proposed methods. In principle, we show these values in
all cases for the actions performed from the initial state
s0, nevertheless, similar plots can be obtained for each
state.

Fig. 5a shows the Q-values obtained over 300 episodes
for the actions of moving to the left aL, to the right aR,
and staying in the same room aS from the initial state
s0. It is possible to observe that during the first episodes
the agent prefers to perform aR as a consequence of the
collected experience which is shown by the blue line.
However, as the learning improves, the three actions
converge to similar Q-values above 0.6.

In Fig. 5b can be seen the estimated distance n (ac-
cording to Eq. (5)) from the initial state s0 to the reward
by performing the three available actions. Contrary to
the Q-values, the distance needed to reach the reward
decreases over time, starting with more than 50 actions
and reaching values close to the minimum. It can be seen
that action right aR converges faster since the estimated
distance is computed according to the agent’s experience
using the Q-values and the reward. Since the distance
n is obtained from the Q-values, it can be produced
for any of the proposed approaches, however, we use it
specifically to compute the probability of success with
the introspection-based approach.

In Fig. 5d are shown the probabilities of success for
the memory-based approach taking the different possible
actions from the initial state s0, i.e., the probability of
successfully finishing the task choosing any path from
room 0. The three possible actions from this state, i.e.,
go to the left room aL, go to the right room aR, and
stay at the same room aS are shown using red, blue,
and green respectively. In the first episodes, any possible
action has a very low probability of success since the
agent still does not know how to navigate appropriately
and, therefore, often selects an action that leads it out
of the floor. Over the episodes, the agent tends to follow
the path to its right to reach the goal state, however,
after 300 episodes all the probabilities converge to a
similar value as the agent collects enough knowledge in
all paths.

By using the probability of success as a source of
information for a non-expert end-user, the RL agent can
more easily explain its behavior in terms of its goals
and why at a certain point of the learning process one
action may be preferred instead of others. For instance,
after 50 learning episodes, the computed probabilities
of success are 48.09%, 70.46%, and 64.24% for actions
aL, aR, and aS respectively. Therefore, the robot might
justify its behavior as follow: ‘From the initial room, I
chose to move to the right because it had the biggest prob-
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(c) Noisy signal from (5d).
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(d) Memory-based approach.
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(e) Learning-based approach.
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(f) Introspection-based approach.

               Left                  Right                  Same

Fig. 5: Deterministic robot navigation task. Results are shown from the initial state s0 for all possible actions.
During the first episodes the agent prefers going to the right room as appreciated in the Q-values, however, all the
probabilities converge to similar values after 300 episodes. Over the episodes, the estimated distance n gets closer
to the minimum number of actions.

ability of successfully finishing the task’. Since the com-
puted probabilities of success using the memory-based
approach are obtained directly from the performed ac-
tions during the episodes, following we use these results
to compare to both: the learning-based approach and
the introspection-based approach. Moreover, we use a
noisy signal obtained from the memory-based approach
as a control group. For all the approaches, including the
noisy signal, we compute the Pearson’s correlation to
measure the similarity between the approaches as well
as the mean square error (MSE).

Fig. 5e shows the probability of success for the
three possible actions from the initial state s0 using
the learning-based approach. Similarly to the memory-
based approach, the probabilities show the agent initially
prefers to perform the action for moving to the right aR,
however, as the previous case, after the learning process,
all the probabilities converge to similar values close to
90% of success.

The probabilities of success using the introspection-
based approach are shown in Fig. 5f. As before, the
possible actions are shown from the initial state s0. The
evolution of the probabilities behaves similarly over the
episodes as in previous approaches. Initially, the agent

favors the action to the right room but the three actions
reach a similar probability of success after training.

Equivalently as shown by the learning-based ap-
proach, the introspection-based approach in the first
episodes gets a probability of success equal to zero
Ps = 0. This initial behavior is due to the fact that
the probability of success Ps using the learning-based
approach is computed in a similar way as the Q-values,
which is updating the P-values inside the P-table. Like-
wise, the estimated probability of success P̂s using the
introspection-based approach is computed from the Q-
values as it is a numerical transformation from the
estimated distance n.

Overall, the three proposed approaches have similar
behavior when using deterministic transitions reaching
similar results in terms of the final probabilities of suc-
cess from the initial state s0 and the evolution over
the learning process. To further analyze the similarity
between the proposed approaches we compute the Pear-
son’s correlation as well as the MSE with respect to the
memory-based approach. Additionally, we have used a
control group of probabilities of success as a noisy signal
from the memory-based approach using 20% of white
noise (M = 1, SD = 0.2). We have used that amount
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Fig. 6: Pearson’s correlation between the probabilities
of success for all the approaches considering the three
possible actions from the initial state s0 in the determin-
istic robot navigation task. All the approaches obtain a
similar behavior with the exception of the noisy signal
obtained from the memory-based approach and used as
a control group.

Table 1: MSE for all the proposed approaches using
deterministic transitions against the memory-based ap-
proach. All shown actions are performed from the initial
state s0.

Deterministic approach aL aR aS

Learning-based 0.0117 0.0110 0.0178
Introspection-based 0.0095 0.0065 0.0083
Noisy Memory-based 0.0187 0.0245 0.0226

of noise since we want to create control data from our
baseline approach which are different enough from the
original probabilities and, at the same time, distinguish-
able from each other. However, in this work, we do not
test how tolerant our approaches are to respond to pos-
sible noise. The resultant noisy probabilities of success
can be seen in Fig. 5c.

In Fig. 6 is shown the correlation matrix for all the
approaches. In the figure, axes are the different actions
from the initial state s0 for each proposed method. The
uppercase letter refers to the action and the lowercase
one refers to the method. Thus, L, R, and S are for
the actions of going to the left, to the right, and stay-
ing in the same room, whereas m, l, p, and n are for
memory-based, learning-based, introspection-based, and
noisy approaches respectively. The figure shows that
there is a high correlation between the three proposed
approaches, while in our noisy control group the values
of the correlations are much lower in comparison.

Moreover, Table 1 shows the MSE between the
memory-based approach and all the other approaches.
It can be seen that the introspection-based approach
approach has the least amount of errors in relation to
the memory-based benchmark, obtaining an MSE lower
than 0.01 for all possible actions, which is achieved
with much lower memory-usage than the memory-based
approach.

5.2 Stochastic robot navigation task

In this section, we have performed the same robot navi-
gation task but using stochastic transitions instead as is
the case in many real-world scenarios. In our scenario,
to use stochastic transitions means that the RL agent
may perform the action a from the state si to the state
sj and may reach the intended state sj with a transition
probability pt < 1, or more precisely pt = 1 − σ, with
σ ∈ [0, 1] (if σ = 0 deterministic transitions are used, i.e.,
no stochasticity) taking into consideration the defined
transition function. We have introduced a transition
probability pt = 0.9, or σ = 0.1. In other words, a 10%
of stochasticity in order to test how coherent are the
possible explanations extracted from all the proposed
approaches.

Fig. 7a shows the obtained Q-values after the learn-
ing process. The actions shown also correspond to the
three possibilities, i.e., aL, aR, and aS , from the initial
state s0. Similarly to the use of deterministic transi-
tions, the Q-values converge to similar values after 300
episodes, however, in this case the agent favors the ac-
tion of going left in the first episodes. Certainly, this is
not due to the use of stochastic transitions, but rather
the agent in this experiment explored initially that path,
which can lead to diverse exploration experiences over
different learning processes.

In Fig. 7b is shown the estimated distance n in terms
of actions to the reward. By using stochastic transitions
the distances also decrease over time getting close to the
minimal amount of actions. In this case, the action of
going to the right aR needs more time to converge since
this path is explored later as shown in the Q-values.

Fig. 7d shows the probabilities of success during the
learning process from the initial state s0 using stochas-
tic transitions and the memory-based approach. In this
case, the agent initially exhibits more experience tak-
ing the path to the left; however, after 300 episodes,
similarly as before, the probabilities converge to a sim-
ilar value. Although using stochastic transitions lead
to a less overall probability of success, in comparison
to the deterministic robot navigation task, the agent
is still able to explain in these terms the reasons for
its behavior during the learning episodes. In this case,
after 50 learning episodes, the computed probabilities
of success are 68.99%, 51.02%, and 58.65% for actions
aL, aR, and aS respectively. Therefore, according to the
experience collected by the robot, the behavior might
be justified as: ‘From the initial room, I chose to go to
the left because it had the biggest probability of success’.
Like the previous case, we have used the memory-based
approach as a baseline to compare the other proposed
approaches, since these probabilities are obtained di-
rectly from the actual robot experience collected in the
episodic memory.

The probabilities of success for the three possible
actions from the initial state s0 using the learning-based
approach are shown in Fig. 7e. Like using the memory-
based approach, at the beginning of the training, the
agent shows more experience by following the path to
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(c) Noisy signal from (7d).
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(d) Memory-based approach.
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(e) Learning-based approach.
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(f) Introspection-based approach.
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Fig. 7: Stochastic robot navigation task. Results are shown from the initial state s0 for all possible actions. In this
case, the agent favors going to the left room at the beginning of the training, however, as in the previous case,
for each approach all the probabilities converge to similar values after 300 episodes. The estimated probabilities
of success are lower than the deterministic case, which is due to the introduced σ-value stochasticity. In the
learning-based approach, due to the fact of using a discount factor equals to one (γ = 1), the agent becomes more
foresighted and take into consideration all the possible future reward, which leads to slightly higher probabilities of
success. The estimated distance n converges close to the minimum for all actions after the learning process.

the left, but also the three actions converge after train-
ing. In this case, the probabilities of success converge to
a slightly higher amount in comparison to the memory-
based approach. This is due to the fact that these proba-
bilities are computed using the P-values from the P-table.
These values are updated according to Eq. (4), where we
set the discount factor γ = 1 and, therefore, the agent is
more foresighted taking into account all possible future
rewards.

The estimated probabilities of success using the
introspection-based approach are shown in Fig. 7f. The
probabilities are for the three possible actions from the
initial state s0 as well. The introspection-based approach
has a similar behavior as the memory-based approach,
converging to similar values after the learning process
when using stochastic transitions. The estimated proba-
bilities are computed from the Q-values using the Eq. 8
and, therefore, it can be similarly seen that the agent
preferred the path to the left at the beginning of the
training.

As in the deterministic case, we have also used a
noisy signal in the stochastic robot navigation task as
a control group. We obtained the noisy signal from the
memory-based approach since this is computed from the
actual agent’s interaction during the learning process.
Once again, we have added a 20% of white noise using a
normal distribution with media 1 and standard deviation
0.2, i.e., (M = 1, SD = 0.2). The noisy signal can be
seen in Fig. 7c.

As in the deterministic robot navigation task, we
also compute the Pearson’s correlation as well as the
MSE to analyze the similarity between the obtained
probabilities of success Ps. In Fig. 8 is shown the corre-
lation matrix for all the approaches. The axes contain
the different possible actions from the initial state s0
for each proposed method. As mentioned, the uppercase
letter refers to the action and the lowercase letter refers
to the method. Although the correlations are lower in
comparison to the deterministic robot navigation task
due to the use of stochastic transitions, the figure still
shows that there is a high correlation between the three
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Fig. 8: Pearson’s correlation between the probabilities
of success for all the approaches considering the three
possible actions from the initial state s0 in the stochastic
robot navigation task. Although the correlation is lower
in comparison to the deterministic approach due to the
stochastic transitions, all the approaches obtain a similar
behavior with the exception of the noisy signal.

Table 2: MSE for all the proposed approaches using
stochastic transitions against the memory-based ap-
proach. All shown actions are performed from the initial
state s0.

Stochastic approach aL aR aS

Learning-based 0.0153 0.0171 0.0161
Introspection-based 0.0058 0.0068 0.0045
Noisy Memory-based 0.0271 0.0166 0.0218

proposed approaches, in opposite to the noisy control
group, where the values of the correlations are lower in
comparison.

Furthermore, Table 2 shows the MSE between the
memory-based approach and the other approaches using
stochastic transitions. It is observed that once again the
introspection-based approach is the most similar to the
memory-based approach, obtaining errors lower than
0.007 for all possible actions, which is also achieved using
much less memory in comparison to the memory-based
approach.

5.3 Continuous sorting object task

In this section, we show the results obtained in a contin-
uous task. The continuous sorting object task has been
used along with the introspection-based approach. As
demonstrated in the previous section, all the proposed
approaches are equivalent in terms of the probabilities
of success obtained, however, not all of them are suitable
for all problem representations. Moreover, as aforemen-
tioned, the introspection-based approach is more efficient
( O(1)) in terms of memory use and time required for
learning. In this problem, using the memory-based ap-
proach is not feasible since no tabular representation is
possible; moreover, the learning-based approach would

require the training of an additional neural network as
a function approximator.

Figure 9a shows the Q-values from the initial state
for the 4 possible actions averaged for 10 agents. The
results are smoothed using a Savitzky–Golay filter [63]
with a window of length 15 and a polynomial of order 3
to fit the data. As mentioned, the Q-values are in the
reward function domain and the dominant initial action
during the 300 learning episodes is ’grab object’, which
indeed leads to finish the task faster. The Q-values for
this action vary from 0.25 to 0.45 during the training,
thus, if they are directly used to generate an explanation,
it would be meaningless for non-expert users.

The probabilities of success are computed directly
from the Q-values using the logarithmic transformation
introduced in the introspection-based approach. Fig-
ure 9b shows the probabilities of success from the initial
state for the 4 possible actions. The results are averaged
for 10 agents and smoothed using the Savitzky–Golay
filter once again with a window of 15 and the data fitted
with a polynomial of order 3. In this case, it is observed
that estimated probabilities for the action ’grab object’
vary from values close to 0.5 to 0.6. This respectively
means 50% and 60% of probability for successfully com-
pleting the task when performing this action from the
initial state. In this regard, an explanation elaborated
in such a way may be much more intuitive to follow by
non-experts interacting with the robot.

Similarly, counterfactual arguments may be given.
For instance, after 300 learning episodes, a user may
ask in the initial state ’why the action move right or
move left have not been chosen by the agent’. The
robot may intuitively answer this question using the
computed probability of success for the actions. Thus,
an answer may be ’I have selected the action grab object
because doing so, I have 59% chances of sorting all the
objects successfully, while moving left I have only 38%
probability of being successful’.

5.4 Real-world scenario

As previously mentioned in Section 4.3, we have per-
formed a simple real-world test involving two different
situations. In the first situation, the robot performed the
action aR (move to the right) from the initial position
(room 0). We showed to the user one of the following
explanations: (i) I moved to the right because it has a Q-
value of 0.744, or (ii) I moved to the right because it has
a 95.8% probability of reaching the table. In the second
situation, the robot performed the action aL (move to
the left) that led the robot to the goal position (room
5). We showed to the user one of these explanations:
(i) I moved to the left because it has a Q-value of 1, or
(ii) I moved to the left because it has a 100% probability
of reaching the table.

Both Q-values and probabilities of success Ps have
been computed with the introspection-based approach.
As non-expert end-users have no understanding of the
meaning of a Q-value necessarily, we hypothesize that
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(b) Introspection-based approach.
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Fig. 9: Continuous sorting object task. Results are shown from the initial state for all possible actions. In this case,
the agent favors the action of grabbing an object in order to complete the task faster. The estimated probabilities
by the introspection-based approach are computed with the logarithmic transformation directly from the Q-values.
Due to the transformation, the probabilities may allow producing better explanations to non-expert end-users.

an explanation using the probability of success should
bring more clear ideas in order to understand the robot’s
behavior. However, the situations are different. While in
the first situation the robot is still far from the reward,
in the second situation the robot is initially just one ac-
tion away from the goal position. Therefore, we consider
that end-users may have a general better understanding
of the second situation since this needs only one action
to complete the task. Therefore in this situation, expla-
nations may make more sense to users regardless if they
are shown using Q-values or the probability of success.
Another aspect that may affect the explainability judg-
ment is the previous experience in the current scenario.
Whatever situation is experienced first by an end-user,
this may bias the next situation, since they have already
seen the robot acting and may have a better perception
of the robot’s behavior. Nevertheless, we have performed
this test as a proof of concept and we do believe that
further human-robot interactive experiments are needed
in order to draw meaningful conclusions. For instance, it
is important to test the approaches including end-users
with different backgrounds, aiming at people with no
experience in machine learning. Additionally, including
people with different levels of educational background
(e.g., English language, knowledge in math, etc.) would
also benefit future tests since our explanations are in-
tended for non-expert end-users as widely as possible.

6 Conclusions

In this work, we have presented an explainable robotic
system to supply understandable human-like explana-
tions to an end-user in a human-robot environment. The
experimental scenarios have been carried out using a
robot simulator where 2 robotic tasks have been imple-
mented. Additionally, a real-world proof of concept has

been carried out in order to validate the probability of
success as a valid metric for explainability purposes. The
proposed approaches do not focus on speeding up the
learning process nor on generating automatic explana-
tions, but rather on looking for a plausible and practical
means of explaining the robot’s behavior during the
decision-making process. For this purpose, we have used
goal-driven explanations instead of state-based explana-
tions.

The proposed approaches estimate the probability of
success for each action, which in turn allows the agent to
explain the robot’s decision to non-expert end-users. By
describing decisions in terms of the probability of success,
the end-user will have a clearer idea about the robot’s
decision in each situation using human-like language. On
the contrary, using Q-values to explain the behavior, the
end-users will not necessarily obtain a straightforward
comprehension unless they have prior knowledge about
reinforcement learning or machine learning techniques.

We have implemented three approaches with differ-
ent characteristics. First, the memory-based approach
uses an episodic memory to save the interaction with
the environment from which it computes the probability
of success. Second, the learning-based approach utilizes
a P-table where the values of the probability of suc-
cess are updated as the agent collects more experience
during the learning process. Third, the introspection-
based approach computes the estimated probability of
success directly from the Q-values by performing a nu-
merical transformation. The proposed approaches differ
in both the amount of memory needed and the kind of
RL problem representation where they could be used.

Using either deterministic or stochastic transitions
in the robot navigation task, the obtained results show
that the proposed approaches accomplish similar behav-
ior and converge to similar values, which is also verified
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through the high correlation level and the MSE com-
puted. Overall, from the similarity exposed by the three
proposed approaches, the learning-based approach and
the introspection-based approach represent a plausible
choice for replacing the memory-based approach to com-
pute the probability of success, using fewer memory
resources and being an alternative to other RL problem
representations. In this regard, the introspection-based
approach is the one requiring fewer resources in compar-
ison to the 2 others. Additionally, we have demonstrated
that the introspection-based approach is easily scaled
up to continuous scenarios by implementing the visual-
based sorting object task.

Although we have used simulated scenarios, an ad-
ditional important aspect to consider in explainable
robotic systems is real-world scenarios in which human-
robot trust may be critical, such as medical or safety
scenarios, or when decisions are taken based on biased
data [64]. If a robot is required to give an explanation
during the first learning stages, the RL agent may not
have collected all the necessary information to answer
properly. In other words, the robot may provide an in-
correct or poor explanation that although it may be the
best to its current knowledge, still it is not necessarily
correct after the optimal policy has been learned. If
this explanation seems coherent to the end-user, this
may create an unjustified trust feeling and lead to in-
appropriate decisions, and in critical cases exposing the
human to unsafe or risky situations. If the explanation
is obviously wrong, this may deteriorate the trust rela-
tionship and the human counterpart may not tolerate
that kind of answer in the future [65]. A comprehen-
sive explanation is sometimes impossible given that the
underlying algorithms may be too complex to explain
to non-expert end-users. Sometimes, it is not possible
due to privacy breaches. Nevertheless, it is important
to focus on explaining the robot’s behavior to keep it
accountable and working according to the laws [66].

As future works, we see reward decomposition [22] as
a good alternative to include additional reward signals,
such as more complex penalties, or to address multi-
objective problems. In this regard, each meaningful part
of the reward signal may be decomposed in order to
compute the different independent probabilities of suc-
cess and generate explanations for each of them. It is
also important to test how much impact different values
of stochastic transitions, represented by the σ parame-
ter, especially considering that in real-world scenarios
stochasticity may vary between states.

We also plan to use a real-world robot scenario in
order to automatically generate explanations to be given
to non-expert end-users. Using a real-world scenario, we
plan to perform a user study to measure the effectiveness
of the probability of success as a metric to enhance the
trust in robotic systems.
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