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ABSTRACT
Interactive reinforcement learning is an approach in which an ex-
ternal trainer helps an agent to learn through advice. A trainer is
useful in large or continuous scenarios; however, when the char-
acteristics of the environment change over time, it can affect the
learning. Robust reinforcement learning is a reliable approach that
allows an agent to learn a task, regardless of disturbances in the
environment. In this work, we present an approach that addresses
interactive reinforcement learning problems in a dynamic environ-
ment with continuous states and actions. Our results show that
the proposed approach allows an agent to complete the cart-pole
balancing task satisfactorily in a dynamic, continuous action-state
domain.

CCS CONCEPTS
•Computingmethodologies→Reinforcement learning; Tem-
poral difference learning.
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1 INTRODUCTION
Reinforcement learning (RL) is an approach that tries to solve the
problem of an agent interacting with the environment to learn the
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desired task autonomously. The agent learns from its own expe-
rience, taking actions, and discovering which ones produce the
greatest reward [17]. However, in many RL implementations, the
space of states and actions is usually considered a discrete domain
[6, 17, 19] or a discrete representation [1, 3, 7, 15]. Discretization
prevents the agent from identifying which regions of space are
more important than others. Moreover, in this process, information
is lost, and it is difficult to learn from past experiences [8, 20]. In
large domains, the agent spends a lot of time finding an optimal
policy, being impractical in real-world applications [3]. Interactive
Reinforcement Learning (IRL) is an approach that allows an exter-
nal trainer advises the RL agent to improve its performance [3].
Additionally, RL agents usually work in environments which are
not controlled, i.e., it is not guaranteed that the environment is kept
in constant condition, avoiding some external noise input. There-
fore, it is essential to develop robust algorithms that help the agent
to learn faster an optimal policy, and to overcome uncontrollable
disturbances in large domains.

2 INTERACTIVE AND DYNAMIC APPROACH
In several occasions, letting an agent learn a task by itself involves
problems from exploration and weak tendency that avoid finding
the optimal policy [9]. IRL considers a knowledgeable trainer, which
gives advice or guidance to the RL agent, having an effect of re-
stricting the action selection to those related to the target object
[16].

In an IRL scenario, it is desired the interaction between the exter-
nal trainer and the agent be as minimal as possible. The guidance
can be obtained from either an expert or non-expert trainer, ar-
tificial agents with perfect knowledge of the task; or, previously
trained agent [4, 5]. There are two approaches to receiving advice
from an external trainer, reward-shaping [12, 16, 19], where exter-
nal trainer provides additional reward, and policy-shaping, where
an external trainer modifies the action just selected by the agent
[7, 13].
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During the learning, the agent performs an action that stimulates
the environment in some way. If the environment is governed by
a parametric system, the action acts as an input that modifies the
output values, but not the model of the system. Thus, there could
be parameters in the system that change concerning time; such
parameters can be independent of actions and states [14]. In this
sense, some features of the system change independently of agent
control. Consequently, an RL agent can receive different amounts of
reward for the same action, during the process to gather knowledge.

Morimoto and Doya [11] present the Robust Reinforcement
Learning (RRL) an approach that introduces a disturber who pro-
vides disturbance to the environment. To resist a disturbance input,
it considers an additional reward that modifies the main reward of
the environment.

3 OUR APPROACH: INTERACTIVE ROBUST
REINFORCEMENT LEARNING

In order to include advice during learning when the agent inter-
acts with a dynamic environment, we combine the IRL and RRL
approaches to propose Interactive Robust Reinforcement Learning
(IRRL), an approach that involves advice for the agent to learn a
task from an environment that has dynamic features.

For IRL in continuous scenarios, we use the approach presented
in Millán et al. [10]. The main idea is to include external advice
as a probability function in the policy 𝜋 (𝑢 |𝑥, 𝐽 ), that denotes the
probability density for taking action𝑢 in the state 𝑥 when the trainer
provides an advice 𝐽 . Furthermore, as in some steps the trainer
may not provide feedback, the likelihood of receiving feedback has
probability 0 < 𝐿 < 1 [7].

To address the robust approach, we include policy-gradients
[18] in the Actor-Disturber-Critic (ADC) algorithm proposed by
Morimoto and Doya [11]. The main idea is to consider an objective
function for agent policy 𝜋 , and the disturber 𝜅 . In the disturber, the
cost function Γ(𝜅) evaluates the performance of the distribution
in generating disturbances that have a more significant impact on
the states, and in the selection of the next action. We consider that
the disturber is a probability density function 𝜅𝜔 (𝑥) parameterized
by the weight vector 𝜔 ∈ R𝑁𝑑 . The parameter 𝜔 is adjusted in the
direction of the gradient ∇𝜔Γ(𝜅) to generate the highest possible
disturbance:

𝜔𝑡+1 − 𝜔𝑡 ≈ 𝛼𝜔∇𝜔Γ(𝜅),
where 𝛼𝜔 is a learning rate of the disturber. In order to resist the
disturbance, we consider the additional reward𝑤 (𝜔𝑡 ) of the form:

𝑤 (𝜔𝑡 ) ←− 𝜂2𝜔†𝑡 𝜔𝑡 ,

where † is the transpose of a vector and 𝜂 is a parameter of robust-
ness [11].

4 EXPERIMENTAL RESULTS
To evaluate the performance of our methodology, we apply it to
the cart-pole balancing task [2]. In our experiments, 20 agents are
trained with 3000 episodes, we also investigate the learning behav-
ior for different values of the probability of likelihood 𝐿. The RL
parameters are set with values 𝛾 = 0.9, 𝜎𝑥 = 1, 𝜎 𝑗 = 1, 𝛼𝜃 = 0.0001,
𝛼𝜐 = 0.0001, 𝛼𝜔 = 0.0001, and 𝜂 = 0.45. The friction of the cart on
track is the disturbance, setting in [0.0005, 1]. To provide advice,
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Figure 1: Average steps (a) and average reward (b) over 20
runs using IRRL with different probability of likelihood 𝐿.

we use an oracle, a function that advises pushing the cart to the
right or the left, whit values 1 and −1, respectively. In this sense,
the advice favors the non-negative actions if advising to the right
or non-positive actions if advising to the left. Fig. 1(a) represents
the average steps taken by the agent to keep the pole balanced. We
observe a better performance of the agents receiving advice com-
pared to the autonomous RRL agent. In the first episodes, agents
receiving a lot of advice may take longer episodes to improve their
performance; however, after 1000 episodes, the average number of
steps is higher than 300. With a probability of interaction 𝐿 = 0.7,
learning begins with a low performance; however, its performance
improves at the same time than other probability of likelihood val-
ues 𝐿. Fig. 1(b) shows the average reward collected during learning.
After 1500 episodes. all the agents converge to a reward close to 1.

5 CONCLUSION AND FUTURE WORKS
We presents an approach to implement the so-called IRRL, a com-
bination of IRL and RRL in scenarios where states and actions are
continuous in dynamic environments. In terms of average steps,
our approach performs better than the autonomous RRL. However,
the performance of the IRRL agent with probability 𝐿 = 0.5 is close
to that of the autonomous RRL agents. In terms of reward, we note
that a cumulative reward of 1 is achieved for any probability 𝐿;
however, values such as 𝐿 = 0.7 have greater difficulty in the first
learning episodes. This behavior is influenced by uninformative
guidance, although the advice is correct concerning the space of
actions that provide less information. Receiving much advice of
this nature may not help in learning, even more, when the state is
disturbed externally.

As future work, we intend to implement our approach in prob-
lems with larges domains, as well as other additional architectures,
such as deep learning-based methods to carry out more complex
tasks.
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