
Neural Network-Based Control of a
Humanoid Robot for Grasping Tasks

Master Thesis
at the Knowledge Technology Group, WTM

Prof. Dr. Stefan Wermter

Department of Informatics
University of Hamburg

in cooperation with the
Institute for Reliability Engineering

Prof. Dr.-Ing. Uwe Weltin

School of Mechanical Engineering
Hamburg University of Technology

submitted by
Niklas Widulle

on
5th July 2016

Examiners: Prof. Dr.-Ing. Uwe Weltin

Prof. Dr. Stefan Wermter

Supervisor: Francisco Cruz

Niklas Widulle

Matriculation no.: 20837931

Kasernenstraße 21

21073 Hamburg

mailto:wermter@informatik.uni-hamburg.de
mailto:weltin@tu-harburg.de
mailto:niklas.widulle@gmail.com
mailto:weltin@tu-harburg.de
mailto:wermter@informatik.uni-hamburg.de

Erklärung der Urheberschaft

Ich versichere an Eides statt, dass ich die vorliegende Master Thesis selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel – insbesondere keine im
Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe. Alle Stellen,
die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als
solche kenntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher
nicht in einem anderen Prfungsverfahren eingereicht habe und die eingereichte
schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Ort, Datum Unterschrift

Erklärung zur Veröffentlichung

Ich erkläre mein Einverstndnis mit der Einstellung dieser Master Thesis in den
Bestand der Bibliothek.

Ort, Datum Unterschrift

Abstract

Abstract

A neural network based controller for a humanoid robot arm is designed. The basis
of the controller is an inverse kinematics solution, which is learned by a multilayer
perceptron network. Two learning strategies are implemented, optimized, and
compared: goal and motor babbling, each of them for both a three-dimensional
and a six-dimensional task space which includes the orientation of the end effector.
Additionally, a solution for relative inverse kinematics is implemented and tested.
Training of the network is done on the basis of an automatically generated forward
model of the manipulator. To allow for linear and point-to-point movements, basic
trajectory generation is implemented. The practical usability of each method is
tested in simulation. This is verified on the real robot.

Three dimensional goal babbling has a consistent learning behavior, but strug-
gles with the influence of redundant configurations. With goal babbling, a better
accuracy in the center can be achieved, but the method has problems exploring
the periphery of this very complex workspace. Using six task space dimensions,
the accuracy of motor babbling is improved. Goal babbling also benefits from the
additional orientation information. The relative inverse kinematics solution has a
high error, likely due to the very large input space, and can only be used with
additional corrections. Since defining achievable rotation coordinates for the un-
der actuated manipulator proved very difficult, the three-dimensional methods are
better in practical use.

This thesis contributes to current research as it provides a thorough comparison
of motor and goal babbling in a practically relevant scenario. Additionally, it proves
that using goal babbling is possible in a six-dimensional task space.

I

Contents

1 Introduction 1

2 Literature Review 4

2.1 Towards Humanoid Robots . 4

2.2 Neural-inspired companion (NICO) Humanoid Platform 6

2.3 Fundamentals of Robot Control . 7

2.3.1 Forward and Inverse Kinematics of Manipulators 8

2.3.2 Kinetics and Robot Control 10

2.3.3 Trajectory Generation and Motion Planning 11

2.4 Machine Learning Approaches . 12

2.4.1 Artificial Neural Networks 12

2.4.2 Single-Layer Perceptrons . 13

2.4.3 Multilayer Perceptrons . 14

2.4.4 The Backpropagation Algoritm 15

2.5 Learning Strategies for Inverse Kinematics 16

2.5.1 Motor Babbling for Learning Kinematics 16

2.5.2 Goal Babbling for Learning Kinematics 17

3 Proposed Approach and Setup 20

3.1 System Overview . 20

3.2 The Forward Model of the Robot Arm 22

II

Contents

3.3 Aproaches for Learning Inverse Kinematics 23

3.3.1 Learning Implications and Metrics 23

3.3.2 Motor Babbling . 24

3.3.3 Goal Babbling . 25

3.3.4 Relative Inverse Kinematics 26

3.3.5 Performance Testing . 26

3.4 Trajectory Generation for the Robot Arm 28

3.4.1 Joint Space Move Commands 28

3.4.2 Task Space Move Commands 28

3.5 Structure and Training of the Neural Network 30

4 Experimental Results 34

4.1 Learning Inverse Kinematics . 34

4.1.1 Meta-Parameter Optimization 34

4.1.2 Performance Using 3D Motor Babbling 35

4.1.3 Performance Using 3D Goal Babbling 37

4.1.4 Performance Using 6D Motor Babbling 45

4.1.5 Performance Using 6D Goal Babbling 48

4.1.6 Performance of the Relative inverse kinematics (IK) Solution 51

4.1.7 Performance in a Limited Workspace 52

4.2 Evaluation of the IK Solutions in Simulation 55

4.3 Evaluation Using the Real Robot 56

5 Discussion 59

A Nomenclature 63

B Instructions for the Source Code 64

Bibliography 67

III

Contents

Acronyms 72

IV

List of Figures

2.1 Different types of industrial robot manipulators: (a) articulated (b)
delta (c) parallel/hexapod (d) selective compliance assembly robot
arm (SCARA) . 5

2.2 The NICO robot . 6

2.3 Biological neural network [51] . 13

2.4 A multilayer network. 15

3.1 The NICO robot in the V-rep simulation environment. (a) original
(b) simplified . 21

3.2 The joints of the right arm of NICO as seen in V-rep. 22

3.3 The structure of the neural network for learning in a three-dimensional
task space. 30

3.4 The structure of the neural network for learning in a six-dimensional
task space. 31

3.5 The structure of the neural network for learning the relative inverse
kinematics in a three-dimensional task space. 32

4.1 The training errors for h = 40: (a) α = 0.01, (b) α = 0.001. Aver-
aged other five samples, smoothed over 10 data points. 36

4.2 The test errors for h = 40: (a) α = 0.01, (b) α = 0.001. Averaged
other five samples, smoothed over 10 data points. 38

4.3 The test positions of a specific neural network (NN) for the different
values of ρ. The network parameters are: h = 40, α = 0.001 40

4.4 The test and learning errors for h = 40, α = 0.01: (a) learning
errors (b) test errors. Averaged other two samples, smoothed over
10 data points. εX = 0.02, eθ = 0.02, phome = 0.1 42

V

List of Figures

4.5 Workspace discovery with goal babbling. While for 105 (a) discovery
has not yet set in, at 106 (b) iterations a big portion of the workspace
is covered. After 108 (c) iterations the workspace is mostly covered,
though positions in the periphery are sparse. The amount of shown
positions are limited to 105 each. Detected boundaries, the home
position and home movements are illustrated. εX = 0.02, eθ = 0.02,
phome = 0.1 . 45

4.6 The test and learning errors for h = 120, α = 0.01: (a) position
errors (b) orientation errors. Averaged other ten samples, smoothed
over 10 data points. 47

4.7 Two examples of the exploration after 107 iterations: (a) h = 40,
α = 0.01 (b) h = 160, α = 0.01. 49

4.8 The test errors for h = 160, α = 0.001 (a) position (b) orientation.
Average over 3 samples, smoothed over 10 data points. 50

4.9 The relative errors for(a) h = 10, α = 0.01 (b) h = 120, α = 0.001.
Average over 3 samples, smoothed over 10 data points. 53

4.10 The tested grasping movement. Dashed lines indicate point to point
movements, solid lines linear movements. 57

4.11 NICO grasping a towel. 58

VI

List of Tables

4.1 The results of the experiments for three-dimensional motor bab-
bling. Mean value and 95% confidence interval, five samples. 35

4.2 The results of the experiments for three-dimensional goal babbling.
Mean value and 95% confidence interval of five samples. Activated
weighting functions. εX = 0.02, eθ = 0.02, phome = 0.1 41

4.3 The results of the experiments for six-dimensional motor babbling.
Mean value and 95% confidence interval of ten samples. Linear
output layer. 46

4.4 Test error after 108 examples. 48

4.5 The results of the experiments for six-dimensional goal babbling.
Mean value and 95% confidence interval, three samples. εX = 0.02,
eθ = 0.02, phome = 0.1 . 51

4.6 The results of the experiments for three-dimensional motor babbling
training a relative IK solution. 0.01m intended step size, relative
error. Mean value and 95% confidence interval, three samples. . . . 52

VII

Chapter 1

Introduction

Robots are already widely used in industrial applications such as logistics and
production. In order to use robots in the home or office space new concepts are
needed for both the shape and the control of robots. Because the environment
of our daily lives is designed by humans and for humans, robots that mimic our
human bodies, so called humanoid robots, are best at interacting with it.

To contribute to the fields of cognitive robotics and human-robot interaction
University of Hamburg’s Knowledge Technology Group (WTM) is developing a
robot called Neural-inspired companion (NICO). It is based on the Nimbro-Op
platform developed by the University of Bonn, but equipped with custom arms
and the head from the I-Cub robot [48, 3, 30]. The robot arm has five degrees
of freedom, three in the shoulder, one in the elbow and a rotating wrist. It is
equipped with a gripper as its end effector.

Grasping items requires the ability to move the end effector of the arm to a
predefined position and orientation. While calculating the position and orientation
of the end effector from the joint angles is a simple forward transformation, com-
puting the required joint angles for a desired position and orientation is a far more
complex problem known as inverse kinematics (IK). For some special robot con-
figurations used in industrial robots this problem can be analytically solved [34].
For the general case numerical solutions do exist. All of these methods require
precise knowledge of the manipulator and cannot adapt dynamically to changes of
the structure. These can occur, for example, when a motor is damaged or struc-
tural parts are bent. Soft computing methods based on artificial neural networks
(ANNs) have been proposed and applied to the problem. Inspired by the way
infants learn to control their body, random movements are performed to learn a
model of the relation between the position in task space and the joint positions
[42].

Two main methods exist for learning the IKs of a robotic manipulator without
a priori knowledge abouts its kinematics. The older one is called motor babbling:

1

Chapter 1. Introduction

random movements are performed in the joint space and the resulting end effector
positions are observed [46]. This mapping can then be learned by any regression
method. A more recent development is goal babbling: random target directions are
chosen, which the robot tries to reach, while already relying on the model in order
to do so [40]. In order to prevent uncontrolled drift, movements are kept inside a
sufficiently known region. This region expands with time as the robot is exploring
the workspace. The main advantage of goal babbling is that it scales well with
additional degrees of freedom in the manipulator. This is because, unlike motor
babbling, it does not need to explore the whole joint space but rather explores the
whole task space. So far, goal babbling has only been used to learn IK in two or
three goal dimensions [41]. The orientation of the end effector has not yet been
included. Since controlling the orientation of the end effector is useful for grasping
tasks, the learning scheme is extended appropriately.

If some positions of the workspace can be reached by multiple joint config-
urations, it poses a serious problem to the learning method, since the examples
seemingly contradict each other. Those positions are frequent if the manipulator
has some form of redundancy, which is the case when the manipulator has more
degrees of freedom than the task space. NICO’s arm has five degrees of freedom,
which means that for positioning the end effector it has redundancy, which can
affect the accuracy if it is not dealt with. If the orientation of the end effector is
included in the control scheme, the manipulator has less degrees of freedom than
is needed to achieve motion in all directions and redundant positions do not exist.
Goal babbling deals with redundancies by weighting the effectiveness of each move-
ment. For methods including the orientation of the end effector the task space has
six dimensions and redundancies are not an issue.

The data can be generated by either the forward kinematics solution, an ap-
propriate simulation, or using the real robot and a measuring system for the end
effector position. Using the forward kinematics is computationally cheaper than a
simulation and is therefore the fastest method overall. A simulation can include
additional effects such as collisions and, if all physical properties are modeled cor-
rectly, displacement. Using the real robot inherently includes all possible effects,
but severely limits the amount of data that can be generated, as it requires real
movements. Moving the end effector requires some form of trajectory generation.
The positions of all required joints for each time interval needs to be generated
according to the desired end effector motion. Which path should be taken is a
problem known as path or motion planning and is additionally dependent on the
task and the environment [49].This can be done by either a higher level controller
or an operator.

In a previous work, a solution for the inverse kinematics of the arm based on
goal babbling has been implemented. This solution focuses on the position of the
end effector and therefore did not include movement of the wrist joint of the robot
arm. No consideration was given to multiple joint configurations and their negative

2

Chapter 1. Introduction

effect on the precision of the solution. The joints were restricted in such a way
that only a small subset of the workspace is available [3].

The main objective of this thesis is to provide a controller which positions the
robot’s hand correctly at known coordinates in order to be able to successfully
grasp objects. This requires a solution to the IK problem. As both motor and goal
babbling can be applied to this problem, they are compared in their performance
and applicability. Primary research questions which arise when solving the IK
problem for this robotic manipulator are:

• How can the goal babbling approach to compute inverse kinematics be ex-
tended to the six-dimensional task space?

• How well does the goal babbling approach scale with additional dimensions
and how does it compare to a motor babbling approach?

The main piece of the controller which is designed is the NN-based IK solu-
tion. For training the NN, data is generated by the forward kinematics that are
automatically derived from NICO’s design description. Motor and goal babbling
in both three and six dimensions are implemented, optimized in their parameters
and compared in their performance and accuracy. Additionally, a relative IK so-
lution is implemented and compared the same way. A basic trajectory generation
solution is implemented. The IK solutions generated by the different methods are
compared in their practicality by using them to control the robot in simulation.
Ultimately the solution is tested on the real robot to perform a grasping task.

This thesis contributes to current research as it provides a thorough comparison
of the performance of motor and goal babbling in a real world scenario. Addition-
ally it shows the possibility of incorporating the orientation in a goal babbling
approach.

3

Chapter 2

Literature Review

2.1 Towards Humanoid Robots

Even though robots are commonly used in industrial environments, referenced in
various media and are now even starting to become relevant in our everyday lives
no single definition for the term ”robot” exists. It was coined by Czech author
Karel C̆apek and derived from the term rabota, meaning ”forced labor” [12]. The
lack of a universal definition is largely caused by the multitude of different robot
types. They all have in common that the robot can perform tasks. The nature
of these tasks, the complexity and level of independence vary widely. Common
categories of robots include industrial robots (IRs), service robots and humanoid
robots.

IRs serve to automate various tasks in the modern factory. Most commonly,
they are used to handle workpieces, for welding, assembly and dispensing [21].
Advantages of robots in these applications are their high flexibility, low cost and
high precision. While normal machines are build for a specific purpose, industrial
robots are able to perform a multitude of functions and can therefore easily be
reused and repurposed. Depending on the task a number of different kinematics are
used. The most common are articulated, SCARA, parallel and delta (see fig. 2.1).
New developments in the field of IR include human-robot-cooperation [18], robotic
milling [56] and adaptive control [6]. Especially for human-robot-interaction and
adaptive control many machine learning (ML) and NN based approaches can be
used[36] [45].

Service robots perform tasks which would normally be done by humans. They
are especially suited for tasks which are dangerous, repetitive or time-consuming.
Service robots are used in the military, disaster recovery, nursing and household
applications, mowing and vacuum cleaning. Currently available service robots can
usually only perform a specific task. As most of these tasks are done in human
vicinity, safety is a concern. This is often addressed by using small robots which

4

Chapter 2. Literature Review

(a) Kuka Kr 60-3 [25] (b) ABB IRB 360 [27] (c) Fanuc f200-iB [13]

(d) Adept Cobra S 600 [1]

Figure 2.1: Different types of industrial robot manipulators: (a) articulated (b)
delta (c) parallel/hexapod (d) SCARA

are intrinsically safe, though this limits uses. Since service robots are often mobile
and act within unknown and dynamic environments, localization and mapping are
necessary. ML has for example been proposed and used for how the robot performs
the given task [32], for localization, mapping [31] and interaction [15].

A humanoid robot is built to emulate the body of a human being. This can
enable it to make better use of environments and tools designed for human use.
Unlike most service robots a humanoid robot can be multipurpose and handle a
multitude of tasks and situations. A humanoid robot which mimics the appearance
of a human being is also called an ”android”. This can help to improve acceptance
by humans as we anthropomorphize targets of communication, as such androids are
ideal for nursing and other activities which require communication with humans
[22]. Human safety in this man machine collaboration is again an issue. Different
methods of collision detection and force/torque limitation have been proposed and
are being used. Limiting the size and power of the robot is a simple but constraining
solution to the problem [54].

5

Chapter 2. Literature Review

Figure 2.2: The NICO robot

Currently available humanoid robots are very constricted. This applies to both
their mechanical dexterity and their cognitive capabilities, which limits their use-
fulness in all applications. Unlike their industrial counterparts humanoid robots
are mainly subject of scientific interest than of practical use. Using neural network
based control can help improve the dexterity of robots and can thereby provide a
step towards humanoids supporting us in our everyday lives.

2.2 NICO Humanoid Platform

Neural-inspired companion (NICO) is a humanoid robot platform (see fig. 2.2)
being developed by the WTM at the University of Hamburg. Its body is based
on the Nimbro-Op platform developed by the Autonomous Intelligent Systems
Institute (AIS) at the University of Bonn [48]. Nimbro-Op is designed as a soccer
robot to take part in the RoboCup competition. It is teen-sized, allowing for
greater physical capabilities than kid-sized robot platforms such as Nao [16] while
remaining comparatively affordable. At its size, it can also still be considered
inherently safe, the robot does not have enough power to do serious harm to
humans. For actuation the platform uses Dynamixel servo motors manufactured
by Robotis Limited. Because the primary focus is soccer, the robot’s arms have
a rather simple design, with only 3 degree of freedom (dof). Its hands are rigid,
useful mainly for maintaining balance and to stand up. Instead of the regular head
of the Nimbro-Op platform NICO uses the head of the iCub platform [30].

6

Chapter 2. Literature Review

The arms are replaced with a five dof custom design [3]. This enables the robot
to also reach in front of its torso and to rotate its end effector. As end effector a
gripper is mounted to the robot arm, it is a simple one dof solution for grasping. It
is limited since it does not include sensory feedback and has no fingers. The design
of joints of the arm is based on the structure of a human arm. Unlike humans, it
can also move its elbow in both directions. This structure has the problem that
its IK and workspace are not easily defined (see section 2.3.1). With NICO being
a research platform the aforementioned limitations provide challenges which can
be overcome by the use of NN. Working with NICO can widen our knowledge and
understanding of robotics and intelligent systems.

2.3 Fundamentals of Robot Control

Robot control is a rather new discipline which has many aspects and is still evolv-
ing. Because of the electro-mechanical nature of robots, control requires an inter-
disciplinary approach which covers many fields of research. With NN also being
a rather recent discipline, the scientific community is conducting a wide range of
experiments with NN to find its applications in the field robotics.

The topic of robot control consists of many different problems and layers. De-
pending on what type of robot is to be controlled, only some need to be considered.
Since the focus of this work is to enable grasping with a humanoid arm only some
are relevant. These include trajectory generation, forward and inverse kinematics
and kinetics of manipulators.

Forward kinematics describe what position the end effector is in given the
position of the manipulator joints. Inverting that problem is to ask for the needed
joint positions in order to reach to a given end effector position. For a serial
manipulator such as a humanoid robot arm the latter is a much harder problem.
In order to find solutions a mathematical description of frames and transformations
is needed. Detailed discussion of these topics is included in section 2.3.1.

The manipulator kinetics extend the kinematics by introducing the dynamics.
For this reason the manipulators’ mass and inertia need to be considered (see
section 2.3.2).

In order to move the end effector of a robot manipulator, it is advisable to
plan a trajectory consisting of the speed and acceleration of the end effector at
every given time step. This planning however should consider the manipulators
joint kinematics and kinetics as well as optimization goals such as minimal time
or energy. This is detailed in section 2.3.3. A related problem is motion planning:
this more high level approach aims to find a suitable or optimal motion given a
certain task and is often considered in the field of mobile robotics.

7

Chapter 2. Literature Review

2.3.1 Forward and Inverse Kinematics of Manipulators

This introduction follows roughly [9] in both notation and structure, because it
can be considered the standard reference on this topic.

The position and orientation of an end effector can be described by a frame,
which sets it in relation to a world or origin frame. A frame can be described by a
transform T . This transform is a 4×4 matrix, containing a rotation matrix R and
translation vector P . For example the frame {A} could be defined by a transform
from the origin frame to frame {A}.

o
AT =

[
o
AR

o
AP

0 1

]
(2.1)

Additionally to defining a frame, a transform can also be used as a transform
mapping which changes in which frame a point is defined and as a transform
operator which creates a new point relative to a given point.

Transforms are highly useful because they can be linked together. For example,
the transform from {A} to {C} is given by:

A
CT =B

C T
A
B T (2.2)

A serial manipulator structure, such as a humanoid robot arm, consists of
a number of fixed links which are connected by joints. These fixed as well as
variable parameters can be put into the structure of transforms with the help of the
Denavit-Hartenberg notation [11]. Once the individual transformations are known
the overall forward kinematics can be calculated by linking these transformations
together. It is to be noted that this transformation only depends on the variable
joint parameters θ.

The relationship between the speed of the joint parameters θ̇ and the speed of
the end effector vee is defined by the Jacobian matrix J .

v = J(θ)θ̇ (2.3)

J is calculated using the knowledge that the position see of the end effector is
defined by the transform derived earlier. The partial derivatives of the position
with respect to the joint parameters for the different linear and angular directions
define the Jacobian matrix [5]. The Jacobian matrix is very important for iterative
inverse kinematics as well as kinetics.

8

Chapter 2. Literature Review

J(θ) = (
δsee
δθ

) (2.4)

Because of eq. 2.3 it is clear that the Jacobian matrix defines in which di-
rections a manipulator can or can not move. For example, a fully stretched out
articulated robotic arm loses its ability to move further outwards, but a manip-
ulator can also lose parts of its mobility in other configurations, when joint axes
align they no longer offer unique movement directions. These positions are called
singularities. They can be found by checking the determinant of the Jacobian
matrix: if it is zero, the matrix loses rank and a movement direction is no longer
available. When moving across the taskspace it is therefore advisable to avoid
singular configurations. Otherwise it can result in erratic behavior of manipulator.

Even though the forward kinematics can be worked out easily and a single
transform can be inverted without problems, general IK still poses a significant
problem. This is due to the nonlinear nature of the IK function. A solution only
exists if the robot can reach the given position and orientation. These positions
together form the workspace of the robot. Depending on the kinematics of the
manipulator, the workspace can be complicated especially when it comes to the
achievable rotations. This, additionally to the easier IK and mechanical consid-
erations, is one of the reasons why only a small number of different kinematic
structures are used in IRs. For example, standard 6-dof IRs have a large dex-
trous workspace in which most orientations are reachable while delta robots have
a simple three-dimensional Cartesian workspace which can then be augmented by
adding joints for rotation [8]. A simple workspace makes task planning easier as
the robots capabilities and limitations can be better understood.

There are a number of different approaches to solve IK. Traditionally there are
the closed-form algebraic solutions. Under some additional assumptions concerning
redundant configurations and only for some manipulator structures these solutions
are available. Well known is Peipers’ solution for 6-dof robots with a spherical wrist
[35]. Most commercially available IRs use this manipulator structure.

Additionally to the algebraic solutions there are also iterative approaches. They
are usually used when the closed-form solution is not available. Because of the
iterative nature these approaches are problematic when a solution needs to be
made available to a robot controller in real time. Another issue is that, unlike
closed-form solutions, accuracy is a concern.

Iterative methods use forward kinematics to determine the current position see
and then apply a step to the joint parameters ∆θ to get closer to the goal position
tee.

θ := ∆θ + θ (2.5)

9

Chapter 2. Literature Review

Choosing an appropriate ∆θ is the main objective of an iterative IK algorithm.
The step to the joint angles can be applied to the actual robot, or it can be fed
back into the algorithm until the error is below a certain threshold [5]. Going back
to eq. 2.3 the movement after a change in the joint variables can be approximated
by:

∆see ≈ J∆θ (2.6)

Trying to solve this approximation for ∆θ is thereby a reasonable strategy. This
is however problematic, as the Jacobian matrix needs to be invertible in order to
solve the equation. Generally though, it is not invertible. The Jacobian trans-
pose method substitutes the inverse with its transpose which is computationally
cheap [53]. The Jacobian pseudoinverse method uses the Moore-Penrose inverse
as the replacement. This approximation of the inverse guarantees that the error
is minimized in the sense of least-squares optimality [24]. Other methods include
a damping factor for stabilizing the movement near singularities [7], or use the
singular value decomposition [29], [5].

2.3.2 Kinetics and Robot Control

Accurate and fast movement of a robotic manipulator requires consideration of not
only its kinematics but also of its dynamics. Based on the principle of virtual work
the relationship between the torques at the joints τ and the forces and torques at
the end effector Fee can be derived from eq. 2.3.

τ = J(θ)TFee (2.7)

Using the Lagrange’s equation of motion the relationship between the joint
torques and the joint velocities and accelerations can be described using eq. 2.8.

τ = M(θ)θ̇ + V (θ̇, θ̇) +G(θ) (2.8)

Here M is the mass matrix containing the inertias of the manipulator, V con-
tains the Coriolis- and centrifugal forces and G is the vector of the gravitational
forces. With help of the Jacobian this can even be transferred into a task space
notation. However, eq. 2.8 in itself makes clear why many robot control algo-
rithms rely on direct access to the joint torques, as this allows to direct control
over the manipulator dynamics [33]. NICO uses servo motors which include their

10

Chapter 2. Literature Review

own control loop, leaving only the joint position available as input. As it may be
disadvantageous for advanced control schemes such as, for example, force control
[55], it has a number of advantages. Positioning the robot arm is very simple.
Movements do not necessitate complex trajectory generation, as the controllers in-
side the motors will automatically generate accelerations and velocities needed to
achieve the given position. The proportianal-integral-derivative (PID) controllers
inside the servomotors will operate more precise if their parameters are adapted
to the weights they move. As long as the control loop of the servo motors is stable
and no further feedback is applied, overall stability is guaranteed [2].

2.3.3 Trajectory Generation and Motion Planning

Trajectories need to be generated for a joint to describe a position at time step
that allows to reach a goal position. Once the positions at each time step are
calculated the needed velocities and accelerations to achieve these motions can be
calculated by differentiation. A trajectory can then be described as a function of
the form:

θ(t)

θ(t0) = θs

θ(t1) = θf

(2.9)

Where θ(t) describes the joint position at time t, θs is the starting position and
θf is the end position.

Typical robotic movements are either done in the joint space or require a cer-
tain, often linear, movement in the task space. A motion defined in joint space
is considered if only the initial and final configuration is relevant, or if the joint
space movements have been defined by previously teaching the robot. This is often
done for industrial robots: a user guides it through a set of movements, it can then
repeat these indefinitely [49]. If the movement is done in task space, the trajectory
planning can also be done in task space. In this case, eq. 2.9 does not describe
the movement of a joint but rather the end effector motion. Followed by this, the
joint movements are derived using the inverse kinematics.

The trajectory should adhere to certain physical limitations of the device. Be-
cause the torque of the actuators is limited, the planned accelerations should also
be. The speed of actuation is also often limited. For a smooth movement there
should also be no discontinuity in acceleration to avoid jerk. This can be achieved
by connecting polynomial functions. Each polynomial is calculated based on the
required position, speed and acceleration at the start and end point. This requires
a fifth-order polynomial. If third order polynomials are also used, the acceleration

11

Chapter 2. Literature Review

is not defined [9]. Another method is to connect linear functions with parabolic
blends: intended linear motions are defined and connected via parabolic blends,
which smoothen the transition. Because of this, the actual via points are often not
reached exactly but merely approximated. When moving an industrial robot the
user often has to specify how closely he wants the via positions to be approached,
sacrificing move speed for precision [17].

Motion or path planning is used to search for a possible and ideally optimal way
to perform a movement based task [26]. Because of the complexity of the problem,
this is often done by the user. To achieve an autonomous robot however, it needs
to be solved automatically. A part of it which is largely independent of the task
is obstacle and collision avoidance. The difficulty of finding an appropriate path
lies in the obstacles that need to be avoided. These can be objects, but also self
collisions and the manipulators singularities. One proposed method is to define
repelling potential fields around the obstacles and attracting ones at the goal. This
changes the problem to finding a global minimum. Further difficulties are avoiding
local minima [4] and constructing the potential fields such that only one global
minimum exists. Another method is called ”probabilistic roadmap planner”. It
generates a map of nodes across the workspace and then connects those that are
known to be collision free. A movement is created as a path between nodes [23].

2.4 Machine Learning Approaches

Machine learning aims to teach computers without explicit programming. When
machines are faced with either unexpected, unknown or too complex situations,
explicit programming can fail. This is particularly relevant for autonomous agents
or robots, as they have to adapt to unknown environments. Because animals and
especially humans possess the ability to learn, approaches to machine learning are
often biologically inspired.

2.4.1 Artificial Neural Networks

Artificial neural networks are models used for machine learning. They are inspired
by biological neural network (NN) though they do not try to be perfect copies of
them. Rather, they mimic certain aspects of biological neural networks and put
them in framework which is useful for the application is question.

A simplified biological NN is shown in fig. 2.3. Its main components are:

• Soma or cell body, which perform the calculation

• Axon, the output channel of the neuron

12

Chapter 2. Literature Review

Figure 2.3: Biological neural network [51]

• Dendrites, which are the inputs

• Synapses, which connect the dendrites to another neurons axon

In artificial neural networks, the neurons a have similar structure. They are
connected with a number of inputs and perform a calculation on that input with
their activation function. This output can be connected to the inputs of other
neurons [39].

2.4.2 Single-Layer Perceptrons

Perceptrons are amongst the oldest neural network inspired algorithms [44]. The
word ”perceptron” can refer to both a single neuron or a single layer feed-forward
network.

A single neuron perceptron first multiplies each input x1..xn−1 with its asso-
ciated weight w1..wn−1, then sums up its inputs. Additionally a constant input
xn = 1 serving as a bias term can be introduced, which also has a weight wn asso-
ciated with it. Based on this result the activation function f is performed and the
output y is computed as:

y = f(
n∑
i=1

wixi) (2.10)

13

Chapter 2. Literature Review

The simplest activation function is a threshold, which if the input is over a
certain value output 1, and -1 otherwise.

f(x) =

{
1 if x ≥ 0

−1 if x < 0
(2.11)

The perceptron learns by updating the weights. Because of the introduction of
a weighted bias term the threshold value can always be chosen as zero. Learning is
done by comparing the output of the perceptron with the real value t in a training
set. The error, multiplied by a learning rate {α|0 < α ≤ 1} and the associated
input is subtracted from the current weight to give the new weight.

ŵi = wi − α(t− y)xi (2.12)

If multiple outputs are required, more neurons are needed. In the mathematical
framework this makes the output a vector of size m. The weights can be stored in
a matrix of size n ∗m. Each output can be computed with:

yj = f(
n∑
i=1

Wijxi) (2.13)

2.4.3 Multilayer Perceptrons

This configuration can learn any logical function as long as they are linearly sepa-
rable [52]. If they are not, the model needs to be augmented with another layer of
neurons. This is called a multi-layer perceptron (MLP). Because of the complex
structure of the workspace for which the IK are to be computed, a MLP is used.

In a MLP the inputs to the last layer of neurons are the outputs of the layer
before that, the so-called ”hidden layer” (see fig. 2.4). This leads to the problem
that the influence of the weights of the hidden layer is not direct, eq. 2.12 can
no longer be used to update them. As a solution the backpropation algorithm
is introduced [52]. It feeds the error backwards though the network to find the
influence of each weight on the error. For this it needs to compute a gradient,
which requires the activation function to be differentiable. As a replacement for the
discrete step any continuously differentiable sigmoid function such as the logistic
function or the hyperbolic tangent (tanh) can be used.

A MLP with one hidden layer with a finite number of neurons can learn any
continuous function [19]. Because IK is generally not continuous, a MLP can not

14

Chapter 2. Literature Review

Input Layer Hidden Layer Output Layer

Figure 2.4: A multilayer network.

always find a precise approximation. As discussed in section 2.3.1 non continu-
ities arise at singularities and near the workspace borders. Avoiding singularities
is beneficial for robot control, but this cannot necessarily be said for the bound-
aries. Problems might arise if the errors of high gradients near these influence the
performance in the other regions.

2.4.4 The Backpropagation Algoritm

The goal is to find a set of network parameters that minimize the squared error E
of a given set of examples Z.

Ŵ = arg min
W

(E(W,Z)) (2.14)

Locally around W it can be expanded into a Taylor series. This can be used
to find the direction in which to move in order to minimize the error. The most
common way is to only use the first element of the Taylor series, the gradient, in
order to compute the steepest descent towards a minimum. Other methods also
include the Hessian matrix, which is the second element of the Taylor expansion.

One problem of this method is that convergence is only guaranteed towards a
local minimum. One method of avoiding local minima is to introduce additional
noise into the the system by computing the gradient and updating the weights
only based on single example. This method is called stochastic gradient descent
(SGD) as it relies on random samples. While the computed gradient might point
into a wrong direction for one sample, the high amount of samples will lead to
convergence. A compromise between stochastic and regular gradient descent is

15

Chapter 2. Literature Review

offered by using mini batches. There the updates to the weights are computed
from small batches.

Learning methods can also be distinguished by being performed online or of-
fline. Offline methods use a finished dataset to perform their updates, while online
methods generate their data while learning. Because it only needs one sample at a
time SGD is referred to as an online learning method, though it can also be used
on already completed datasets.

2.5 Learning Strategies for Inverse Kinematics

Traditional IK require knowledge of the structure of the robot. Humans initially
do not have this and are still able to learn how to move. A robot may use a model
of its own structure, but with time its configuration might change. For example, a
motor might take damage or wear on the structure might bend its links. Learning
IK requires data of the mapping from the task space to the joint space. Different
strategies have been proposed on how to generate the needed data.

2.5.1 Motor Babbling for Learning Kinematics

One approach for data generation is motor babbling. Random motor commands are
issued and the resulting end effector position is observed and recorded. In the case
of servo motors where the motor commands are joint positions this is equivalent
to issuing random motions in joint space and observing the resulting positions in
task space. These methods have been applied with success to humanoid robots
[10] [46].

The generation of the data can be done using a known forward kinematics,
or in a simulation environment or on a real robot. Depending on which variant
is chosen, different effects can be part of the learning procedure. A simulated
environment makes it possible to include collisions, gravity and servo motors. The
accuracy of these then depends on the simulation. Using a real robot for learning
includes all possible effects and, additionally, also errors coming from the sensors
used to measure the end effector position. The amount of data needed in order to
generate the model limits use. If generation of a model requires years of real time
movement, using the real robot is not an option. The simple forward model can
instead be employed: It computes example data faster than the other approaches
by magnitudes.

16

Chapter 2. Literature Review

2.5.2 Goal Babbling for Learning Kinematics

Goal babbling is a newer approach for learning IK. Instead of giving random
commands in joint space, these are issued in task space. This already relies on
the model which is to be learned. The main advantage of this method is that
it is largely independent of the number of joints the manipulator has. Motor
babbling suffers from the curse of dimensionality, while goal babbling scales well
with additional degrees of freedom [42].

While older goal babbling approaches still needed a-priori knowledge of the
workspace, the newest can explore the workspace on its own[40]. That approach
works as follows:

• A comfortable home position shome is chosen

• The model is overfitted on the home position, initializing the network in the
process.

• A random target space direction ∆s

• The target position is then updated according to 2.15

s′(t) = s′(t− 1) + εX ∗ (
∆s

||∆s||
) (2.15)

The model guesses a move command which will put the end effector in the
denoted position. The model has the parameters W , which in case of a NN refer
to the weights of the network. A noise term eθ is added in order to generate novel
outcomes.

θ(t) = g(s(t),W) + eθ(t) (2.16)

The resulting real position is observed and used to update the model. The
update is weighted in such a way that efficient movements get a higher impact
[40]:

we =
||s(t)− s(t− 1)||
||θ(t)− θ(t− 1)||

(2.17)

Some implementations also weight how much the intended move direction dif-
fers from the real one [43]. This gives consistent movements a higher weight and
thereby help to deal with redundancies.

17

Chapter 2. Literature Review

wd =
1

2
(1 + cos(s′(t)− s′(t− 1), s(t)− s(t− 1))) (2.18)

The total weight of an example is then given by:

wt = we ∗ wd (2.19)

A new goal direction is chosen once a boundary of the workspace is detected.
Given a perfect IK solution, the robot would only deviate from its path once it
hits a boundary. Because the model is not perfect deviations will be common. To
indicate boundaries the following rule is used:

0 < (s′(t)− s′(t− 1))
T ∗ (s(t)− s(t− 1)) (2.20)

Once the angle between intended and real movement is bigger than 90 the scalar
product becomes negative and a new direction is chosen. This will also happen
when the movement is further outside of its known region, keeping the explored
region small at the beginning and then slowly expanding it. Additionally to the
random movements, when a boundary is detected with a certain probability the
robot returns to its home position. This movement is done in joint space.

θ(t) = θ(t− 1) + εθ ∗ (
θhome − θ(t− 1)

||θhome − θ(t− 1)||
) (2.21)

This movement is meant to regularize the inverse, and stabilize the solution
[37]. Goal babbling is an approach in which the next explored solution depends
on the state of the model. This can lead to behavior in which the model becomes
unstable, and tries to move the robot towards unreachable positions from which it
cannot learn anymore. Oscillating between positions is possible, as well as getting
stuck in a specific region of the workspace. The home movement is meant to help
prevent that. The mentioned causes of instablity are of course additional to any
in the learning algorithm: gradient descent can also become unstable or oscillate.

Successful implementations of goal babbling have so far been primarily in sim-
ulation. It has been shown that goal babbling scales very well with up to 50 dof in
the manipulator [43]. The implementation uses a two dimensional task space. The
robot is composed of links of the same length connected by rotary joints. This
massively redundant setup makes finding a unique solution hard, goal babbling

18

Chapter 2. Literature Review

achieves that with the help of the efficiency weighting in eq. 2.17. In this two
dimensional case, a precision in the millimeter range was achieved after 105 − 107

movements, depending on the learning parameters. A movement here means not
one data point, but one move direction, with 25 data points each. In the more
recent approach of goal babbling with workspace discovery it is explicitly com-
pared with motor babbling in terms of workspace discovery. Motor babbling is
deemed significantly worse than goal babbling if there are more than 10 dof in the
manipulator [40]. The underlying model is in all the mentioned work a local-linear
map, which is trained using stochastic gradient descent.

The first implementation of goal babbling on a real world system learns the
IK of robotic trunk [41]. This has the effect that the forward kinematics are now
subject to noise because of the motors. Also the measurement of the end effector
position does introduce additional noise to the system. The solution is still capable
of controlling the system to a precision of around 2 cm in the central regions of
the workspace and over 10 cm at some outer positions.

A previous implementation of goal babbling for the NICO robot has used it
successfully in three dimensions to find a solution to the IK problem [3]. Using a
neural network of 10 hidden neurons and a high learn rate it is possible to find a
solution with an average error under 2 cm. However, only a portion of the actual
workspace is considered, as the joint limits are reduced. This not only dramatically
decreases the size of problem, but also linearizes it, as the influence of each joint
declines. The positions of the test set are spread out across the workspace in an
unknown pattern. It is also shown that a single layer perceptron can learn the IK
with only slightly worse precision. This in conjunction with the low number of
neurons in the best solution gives rise to the assumption that the model learned is
rather linear. This is in line with [42], where a goal babbling approach was used
on a limited portion of the workspace for the arm of a Honda humanoid robot.

19

Chapter 3

Proposed Approach and Setup

3.1 System Overview

The most important part of the system is the NICO robot. The other parts are
chosen to offer best possible compatibility with it. NICO is controlled by a Zotac
Zbox Nano AQ02 computer mounted inside its chassis. All sensor inputs as well
as control outputs need to be connected to it. Available sensors include stereo
cameras in NICO’s eyes and dual microphones that can be mounted in its ears.
The motors are connected via a serial bus system to a controller board. The motors
of one extremity share one bus. The controller board is connected to the computer
by USB.

Robotis offers for its Dynamixel servo motors an application programming in-
terface (API) written in C [28]. More high level control is offered by an external
framework called ”Pypot”. It is originally part of the poppy project (see section
2.2) and is written in Python [14]. Simulation of the robot is performed in the
software V-rep by Coppelia Robotics. It allows simulating robot dynamics, gen-
eral mechanics, actuator control and camera sensors. It has built in algorithms for
collision detection, iterative inverse kinematics, trajectory generation and motion
planning [38]. The model of the NICO robot is imported into V-rep by using a
unified robot description format (URDF) file, which is generated from its computer-
aided design (CAD) files. The model is simplified to speed up the simulation (see
fig. 3.1). Pypot has the option to control both the simulated robot in V-rep and
the real robot using the same basic commands. Therefore, Python is chosen as the
programming language for the implementation and Pypot as the interface.

As pointed out in section 2.2, the arms of the NICO robot have five dof. Three
of the joints are located in the shoulder, one in the elbow and one is located at the
wrist (see fig. 3.2). The axes of the first two joints in the shoulder almost intersect
and together they can position the end effector in a sphere around the shoulder.
The next two joints offer additional control of the position and the orientation.

20

Chapter 3. Proposed Approach and Setup

(a) The NICO robot in V-rep simulation.

(b) The simplified version of the robot model.

Figure 3.1: The NICO robot in the V-rep simulation environment. (a) original (b)
simplified

The elbow joint can, unlike a human elbow, be moved in both directions. This can
lead to unnatural looking movements. The last joint of the robot arm is located at
the robots wrist; it controls the orientation of the gripper. The gripper is closed
or opened by an additional joint.

21

Chapter 3. Proposed Approach and Setup

Figure 3.2: The joints of the right arm of NICO as seen in V-rep.

3.2 The Forward Model of the Robot Arm

In order to learn IK data of the forward transformation needs to be generated.
As pointed out in 2.5.1, this data can be generated by a mathematical model, a
simulation or the real system. Since it is expected that many samples need to be
generated, a mathematical model is used.

NICO is a platform which is still under active development, which means that
changes to its structure and body are to be expected. This makes it necessary that
the model can be adapted without much effort to allow learning on the new model.
In development of the NICO robot URDF files are used to define the kinematic
structure. As the URDF file already contains most of the necessary information
to generate the model, a parser makes it possible to easily update to the current
state.

The forward model outputs the position and orientation of the end effector for
given joint coordinates. For that it links together the joint transformations. It can
output the position, the orientation as a rotation matrix, or Euler angles. Addi-
tionally to the information from the URDF file, it is possible to define an additional
end effector. This adds an offset to the last link at the current orientation. This
is useful when different positions of the robot gripper need to be used or when the
robot is holding an item.

The origin of the coordinate system is always defined at the first joint. If the
positions need to be used in another coordinate system they need to be transformed
accordingly. This is done to match the coordinate system of the simulation.

22

Chapter 3. Proposed Approach and Setup

3.3 Aproaches for Learning Inverse Kinematics

Learning the inverse kinematics is based on the two principal approaches of motor
babbling and goal babbling. Implementation of the learning algorithms is done in
Python. It needs to access the forward transformation of the robot kinematics to
generate the data. Additionally it needs to be able to give IK solutions to other
classes. The MLP, which acts as the learning model, is implemented in Pybrain,
a NN framework which excels at ease of implementation and flexibility [47].

3.3.1 Learning Implications and Metrics

Depending on the approach, different problems arise during learning, as parameters
must be chosen and performance measures considered.

The most important property of the learning approach is its stability. Depend-
ing on the parameters of the neural network and on the samples presented to it,
it can become unstable and deviate more from the goal with each iteration. For
the neural network the most important parameter influencing the stability is the
learning rate, a high learning rate can achieve faster results but can cause unstable
behavior. For high numbers of neurons, high learning rates can also cause numeri-
cal problems. In goal babbling, examples generated depend on the learning so far.
That means, that if the neural network has learned from inconsistent examples
so far it may not return to the region of consistent examples. The home position
movement (see eq. 2.21) is implemented to prevent that.

Convergence additionally requires to the algorithm to get closer to a minimum
with each iteration. Close to a minimum the gradient direction is often ill defined
causing the network to oscillate around the solution. High learning rates amplify
the problem. Because of the complex structure of the problem this oscillating
behavior is to be expected, but the magnitude remains a relevant consideration,
as it can prevent better approximation of the solution.

The accuracy of the solution is the main performance indicator. A 100% ac-
curate solution would match a closed-form IK solution. This is, with the given
method not only not attainable, it can also be argued that such a solution would
lack the ability to adjust to other real world influences, such as motor positioning
errors or the influence of gravity. It has been previously established (see section
2.4.3) that a MLP cannot learn the position at singularities. Because avoiding sin-
gularities can be considered beneficial, the induced positioning error might also be.
A good NN solution should therefore be precise in order to be useful, generalizing
to be able to include additional factors and should produce smooth trajectories,
which might resemble human movements.

23

Chapter 3. Proposed Approach and Setup

Workspace coverage is a major issue of goal babbling approaches. Because
the goal directions are defined in task space and only positions with acceptable
deviations are being moved to, the algorithm explores the workspace with time.
How much of the workspace is actually reached and learned to a decent accuracy
therefore depends on the speed of exploration and the number of iterations. Motor
babbling on the other hand explores the workspace in joint coordinates. Because a
priori knowledge of the joint limits is a reasonable assumption and the manipulator
is not massively redundant, meaning full exploration of the joint space is required
in either case, full workspace coverage will be reached rapidly.

How quickly the algorithm can come to a solution is very important for its
usability. If the learning is to be performed on a real robot, generating millions
of data points might be infeasible. Linear methods for example can converge
quickly, but their overall performance might not be acceptable. Goal babbling as a
method is introduced to allow fast learning even for highly redundant manipulators.
Goal babbling is in general quicker the smaller the workspace is that should be
discovered. It can also give very good results for the center of the workspace early
on, but will only later give acceptable solutions in the periphery. The definition of
how fast an approach is depends therefore on its objective: if only a low accuracy
is needed, or only a small workspace is used, a solution can be found faster.

3.3.2 Motor Babbling

Motor babbling uses random motor commands to generate the needed data of the
task space end effector positions. Since the joints are actuated by servos, the motor
commands equal joint positions plus an unknown control error. Because the joints
have different limits and actuation ranges, they have to be normalized to be used
by the NN.

The example generation can be done with two different methods: either using
continuous motions or randomly generating examples in joint space. The latter
has the advantage that it can guarantee a more uniform distribution over the joint
space, thereby optimizing learning. The other method is to use plausible motions,
generated by picking random locations in joint space and connecting them. The
generated positions are not uniform anymore; the middle of the joint space will have
more associated data. But these movements translate better to both a simulated
environment and the real world. The fact that more data is accumulated for the
central locations is biologically highly plausible, as humans are more capable of
controlling their arms in comfortable locations.

NICO’s arm has five dof. The last joint controls the rotation of the gripper.
If only the position of the end effector is to be controlled, this last joint can be
ignored. This is not true if the robot is holding a tool in its gripper, but this
case is not considered here. With three dimensions to be controlled and four

24

Chapter 3. Proposed Approach and Setup

dof this is a redundant manipulator. When using motor babbling without any
additional methods, some end effector positions will be associated with multiple
joint configurations. This will lead to an additional error. The experiments for
three-dimensional motor babbling are carried out as random examples.

When additionally to the position the orientation of the end effector is con-
trolled all of the five joints of the manipulator are used. Dual configurations are
no longer an issue, because with the additional information the manipulator does
not have any redundancy. In fact it is now under actuated, meaning it does not
provide movement in all directions. Which these directions are is difficult to iden-
tify, as it depends on the current configuration (see section 2.3.1). The orientation
can be described by Euler angles: three rotations around the primary axes. Be-
cause these are angles they have a cyclic nature. To provide information about
that to the network the sine and cosines of each angle are passed to the network.
The original angles can then be reconstructed using the arctangent. An interesting
observation is that while the new network now has five outputs for the joint posi-
tions and nine inputs for the position and orientation, the problem for finding the
joint angles associated with a position has not changed much. This is because the
additional joint does barely affect the position. The orientation does only provide
additional information. While methods are available to carry out this approach
with random examples it is done with the more plausible joint movements.

3.3.3 Goal Babbling

Goal babbling relies on plausible, goal directed movements for data generation. It
is implemented in both three and six dimensions.

The here implemented approach for three dimensions uses all of the available
methods to deal with redundancies (see section 2.5.2). Compared with motor
babbling, goal babbling has a lot more parameters. These include the step size for
the movements, the random perturbation of the joint angles and the probability of
home movements. The workspace of the robot’s arm is assumed unknown and very
complex, it largely resembles a spherical shell around the origin of the first joint.
This means that the straight line movements generated by goal babbling cannot
traverse all of it. Instead they need to bounce of the various borders. This is a
difficult scenario for goal babbling and can induce additional problems, be it for
the exploration of the outer regions or the stability of the algorithm. A parameter
is introduced to help detect workspace borders: the joint limits. When a joint
limit is reached, this is taken as indicative of a workspace boundary. This breaks
the assumption of zero knowledge about the kinematics of the device, but is highly
plausible and in line with the motor babbling approach.

Six-dimensional goal babbling is designed analogous with six-dimensional motor
babbling. Again, the Euler angles are encoded using sines and cosines and fed to

25

Chapter 3. Proposed Approach and Setup

the network for training. The goal direction is this time harder to define, as straight
movements do not include rotation. The positional part of the goal direction is
generated the same way as for the three-dimensional goal babbling approach. The
orientation direction is defined as a random vector of three Euler angles. This
makes it easy to integrate the direction into the general framework. In order
to still allow for straight movements the definition of the workspace boundary is
unchanged. This has the disadvantage that the tried orientation may not match
the real orientation. But since the regular movements already introduce many
different directions, exploration still occurs. Additionally, movements that mostly
affect rotation are a possibility. The method described in eq. 2.20 of detecting
a border of the task space fails on such movements, but they will still reach a
join limit at some point. Therefore, joint limits are again used as indicators for
workspace boundaries.

3.3.4 Relative Inverse Kinematics

As a different approach relative inverse kinematics is introduced. Inspired by iter-
ative IK algorithms this NN based relative approach does not try solve the global
IK problem but rather give a joint movement given the current joint configuration
and the intended direction. Iterative IK solve this by using approximations for the
inverse of the Jacobian matrix. Additionally they rely on the only locally linear
relationship between the joint angles and the task position (see section 2.3.1 and
eq. 2.6). A NN is capable of providing a nonlinear mapping to approximate those
problems. Because of the nature of the inverse of the Jacobian for certain joint
configurations movement is not possible in all directions. In some other configu-
rations, there are multiple solutions, which means that different joint movements
will result in the same task space position. Both of these cases will result in incon-
sistent learning examples. But, as long as the proposed movement leads into the
right direction, multiple iterations of the algorithm will still lead to a solution.

A major challenge in this approach is the very large input space. For each
position in the workspace, each direction must be learned separately. The result-
ing input space is too big to be learned exhaustively. Using the generalization
capabilities of a NN might still lead to a usable solution.

3.3.5 Performance Testing

As pointed out in section 3.3.1 the most important performance indicator is the
accuracy of the solution. The obvious method of testing is to create a set of points
and then use the average accuracy on those positions. The choice of those tests
is important. Ideally they should not only give a simple performance metric but
also additional insight into strengths and weaknesses of a solution.

26

Chapter 3. Proposed Approach and Setup

Since the workspace of the manipulator is complex generating a set of points
which are actually inside of it is not easy to do in task space coordinates. Instead
joint space coordinates can be chosen and the resulting end effector positions are
then added to the test set. Selecting the appropriate positions can be done at
random. If enough points are created, they will cover the workspace. This solution
has two major drawbacks: since the positions were created at random, recreating
the results of the experiments is impossible, unless the whole set of points is known
as well. This test set also does not provide additional insight into the performance
of algorithm.

The solution chosen here is a test set which is spaced out in joint coordinates.
The following procedure is used:

• A fraction ρ is chosen.

• Starting from the joint median, each joint is set to that fraction of its limit, its
median, or that fraction of its negative limit. This results in three positions
for each joint.

• All possible combinations of all joints are then used as test positions. For
four joints this results in 34 = 81 positions.

The chosen fractions are ρ ∈ {0.1, 0.5, 0.75, 1}. This test set can be easily
recreated using only the information about the joint limits. It also contains a lot
of additional information, especially for goal babbling: if the error close to the joint
medians is very small, but further outside very large, then exploration only took
place in the center. The error values at the joint limits represent an extreme case:
as it is a discontinuous position the MLP cannot learn its exact value. As such it
should be close to the maximum error. Because the four values of the error contain
very distinct information all of them are used to judge a result. It is important
to remember that the joint position is the output of the NN. The test inputs are
therefore the task positions generated for these joint configurations.

The error of a position is calculated as the Euclidean distance between the
intended and the actual position. The result has again the unit meter. The error
of the orientation is not as easily defined. The Euclidean norm of the Euler angles
is only useful for angles < 90◦, because otherwise different representations can give
different results, negating the definition of a norm [20]. Here the Euclidean norm
on the six variables representing the position, the sine and cosine values of the
Euler angles, is used. While this metric does not directly represent any physical
unit it does give insight into the accuracy of the NN.

The relative NN cannot directly calculate global positions. Therefore the test
set must be comprised of relative movements as well. The origins of these move-
ments are spread throughout the task space by the same method as before. The
goal positions of the movement are spread around it in task space, using a similar

27

Chapter 3. Proposed Approach and Setup

method. The distance can be adjusted. For each origin this results in 33 = 27 goal
positions. Because the absolute error will be small, it is divided by the length of
the intended movement, resulting in a relative measure.

3.4 Trajectory Generation for the Robot Arm

To make the robot arm actually move, both in simulation and reality, the usage of
some form of trajectory generation is needed. The more advanced schemes, detailed
in section 2.3.3, can deliver smooth transitions and behavior. But, for their ideal
implementation, they also need information about the robot kinetics, specifically
maximum joint speeds and accelerations. This information is not available and
implementing the algorithm based on this information breaks the assumption of a
learning robot controller. Because the robot uses servo controllers, these strategies
are not necessary.

3.4.1 Joint Space Move Commands

The simplest kinds of movements are defined in joint space. Two positions are
specified in joint coordinates, the movement then connects those two points. While
it is the simplest kind of movement it is still widely used, because the start and
end positions can be taught by manually positioning them. For this movement
the individual joint positions are split up in portions representing the sampling
time of the robot controller. The Dynamixel motors get the goal position at each
sampling interval. If instead the motors would just directly get the final position
as input, their PID controller would create a movement at maximum speed which
will likely have overshoot.

3.4.2 Task Space Move Commands

Task space move commands require the use of inverse kinematics. The two main
categories are point to point movements, where only the start and end position is
important, and movements with a defined end effector path. The most important
of the latter are linear movements.

For a point to point movement the needed joint coordinates of the start and
end positions are derived using IK, the path in between is carried out in the same
way as a joint space movement.

Linear movements require IK solutions for all points along the path. They can
be generated by splitting up the linear path in segments according to the sampling
time of the controller and then looking up IK solutions for each position along the

28

Chapter 3. Proposed Approach and Setup

way. Because these do not always exist, a path based movement can get stuck
in joint limits. For the three dimensional task space, both a method for linear
movements is implemented and a convenience function for relative movements,
which adds the input vector on top of the current position.

In the six-dimensional task space the definition of a linear movement is difficult.
It is implemented as a linear path in three-dimensional space and a linear interpola-
tion of the orientation. Because the NN requires all inputs to be defined a method
that feeds the current orientation back as input is additionally implemented.

The coordinate system used for the orientation is the world frame and not a
frame attached to the end effector. This makes defining global movements more
consistent. The disadvantage is that local rotations are not as intuitive. However,
the only local rotation which is always available is achieved using only the wrist
joint, which does not need inverse kinematics. Generally the two representations
can be transformed into each other using the forward kinematics.

Relative inverse kinematics require different functions for their movement. A
simple linear movement is achieved by splitting up the goal direction into small
steps and using these small movements and each current joint configuration as
input to the NN. The disadvantage here is that errors from each individual move-
ment add up. Another method is to use a constant move speed and update the
goal direction for after each movement according to the current position. This
currently makes use of the forward kinematics to assess the end effector position,
but external referencing with a camera is also possible. Additionally to both these
options each movement can be optimized internally with the following steps:

• A joint update is calculated by the NN.

• The resulting end effector position is calculated using forward kinematics.

• The error between the intended direction and the real direction is calculated.

• A fraction of that error is used as input to the NN.

• Repeat until the error is smaller than some margin.

With this process it could be possible to achieve a very high accuracy. The
disadvantages include the following:

• This process requires internal knowledge of the forward kinematics, thereby
breaking the assumption of zero a priori knowledge.

• It only works if the update moves into the right direction, which might not
be the case for all configurations and positions.

29

Chapter 3. Proposed Approach and Setup

• It uses more than one iteration and, depending on the implementation, an
unknown compute time. This is a problem as the next update needs to be
known at sample time.

All of the methods for moving mentioned above are implemented. Since they
are implemented in Python and use the Pypot framework they can be used to
control both the simulation in V-rep and the real robot.

3.5 Structure and Training of the Neural Net-

work

Input Layer Hidden Layer Output Layer

x

y

z

θ1

θ2

θ3

θ4

Figure 3.3: The structure of the neural network for learning in a three-dimensional
task space.

In order to learn the IK some kind of regression method needs to be used.
Because of its universal approximation capabilities, a MLP can be used. Since
universal approximation can be achieved by using one hidden layer, this config-
uration is chosen. As stated in section 2.4.3, the fact that IK is generally non
continuous means it cannot be precisely approximated at all positions. This can
be helpful to avoid singularities, but a problem close to the workspace boundaries.
The hyperbolic tangent is chosen as the activation function in the hidden layer.
The activation function in the output layer is, unless otherwise stated, a linear
function. The number of neurons in the hidden layer is one of the major optimiza-
tion parameters: a high number of neurons allows the network to achieve more

30

Chapter 3. Proposed Approach and Setup

Input Layer Hidden Layer Output Layer

x

y

z

θ1

θ2

θ3

θ4

θ5

sin(a)

cos (g)

Figure 3.4: The structure of the neural network for learning in a six-dimensional
task space.

complex behavior, but might learn slower and generalize worse. The number of
input and output neurons is chosen according to the structure of the problem. For
the IK solution in a three-dimensional task space, the inputs are the Cartesian
coordinates and the outputs are the joint angles (see fig. 3.3). The joint angles
are normalized according to their median position and their ranges. When the
orientation is included in the six-dimensional case, the inputs also include the sine
and cosine values of the current orientation in Euler angles (see section 3.3.2 and
fig. 3.4). The relative IK approach has the current joint positions as input: it
needs to know the current configuration in order to update it. The other inputs
are a relative movement. The output is not the new joint position, but rather the
update to the current joint configuration (see section 3.3.4 and fig. 3.5).

The NN is trained using backpropagation. Goal babbling is an online learning
scheme and therefore only such training methods can be used. It works by training

31

Chapter 3. Proposed Approach and Setup

Input Layer Hidden Layer Output Layer

Δθ1

Δθ2

Δθ3

Δθ4
θ1

θ4

Δ x

Δ y

Δ z

Figure 3.5: The structure of the neural network for learning the relative inverse
kinematics in a three-dimensional task space.

on batches of data, because otherwise learning from singular positions in the outer
regions of the workspace can destabilize the solution. The size of those batches
is therefore chosen such that they cover a significant amount of the already ex-
plored workspace. The batches can then be trained as whole or using stochastic
gradient descent. Following previous solutions (see section 2.5.2), stochastic gra-
dient descent is chosen. While it would be possible to train on each data set for
more epochs, it is not done. This is because goal babbling can already use the
information gained from a single epoch to generate new examples and explore the
workspace further. Fast exploration can thereby be more efficient without. In a
scenario where data points are harder to generate, for example when training is
done on a real robot, it might still be better to keep all data and use it to fur-
ther optimize the solution. To keep motor babbling comparable, the same training

32

Chapter 3. Proposed Approach and Setup

method is used. In general motor babbling makes it possible to train the network
independent of the data generation. This opens up the possibilities towards of-
fline learning methods. When generating data on a real robot, this might enable
training a sufficient model from less data points.

33

Chapter 4

Experimental Results

In the following section the results of the different approaches for learning IK
are laid out. First the learning behavior of the NN in different configurations is
analyzed. The practicality of using them to control the robot arm is tested. This
is first done in simulation and afterwards verified on the real robot.

4.1 Learning Inverse Kinematics

4.1.1 Meta-Parameter Optimization

All of the approaches presented in section 3.3 have numerous parameters that
influence learning behavior, not all of which can be explored exhaustively. Since
all of the approaches use a MLP as the model, its parameters are present for all
of them. The number of input and output neurons is specified by the application.
The number of hidden neurons h is one of the parameters which is optimized. A
high number of hidden neurons allows to learn more complex behavior but might
learn slower and generalize worse. The other meta-parameter which is always
present is the learning rate α. A high learning rate can speed the process up, but
can also make it become unstable or oscillating. The other parameters depend on
the chosen approach and are discussed when applicable.

Because the methods use different movements to create their data, the following
does not count the number of movements, but rather the number of data points
created. In the following they are called iterations, since each of these points is used
to train the neural network once. Overfitting to the acquired dataset is therefore
impossible. Unless otherwise stated, the number of iterations is fixed at 107, in
order to keep the results comparable. This can favor some methods over others,
but since for training on the real robot the amount of data that can be generated
is limited, it is a useful comparison.

34

Chapter 4. Experimental Results

Table 4.1: The results of the experiments for three-dimensional motor babbling.
Mean value and 95% confidence interval, five samples.

(a) Error at positions close to joint medians

ρ = 0.1 h = 10 h = 40 h = 120

α = 0.01 0.0536 ± 0.013 0.0560 ± 0.017 0.0520 ± 0.026

α = 0.001 0.0584 ± 0.027 0.0368 ± 0.016 0.0483 ± 0.028

(b) Error at positions at ρ = 0.5

ρ = 0.5 h = 10 h = 40 h = 120

α = 0.01 0.0641 ± 0.0044 0.0696 ± 0.018 0.0611 ± 0.0056

α = 0.001 0.0595 ± 0.0061 0.0496 ± 0.0016 0.0629 ± 0.026

(c) Error at positions at ρ = 0.75

ρ = 0.75 h = 10 h = 40 h = 120

α = 0.01 0.0792 ± 0.0008 0.0729 ± 0.0094 0.0685 ± 0.0044

α = 0.001 0.0755 ± 0.0030 0.0628 ± 0.0024 0.0717 ± 0.026

(d) Error at positions at ρ = 1.0, at the joint limits

ρ = 1 h = 10 h = 40 h = 120

α = 0.01 0.150 ± 0.0036 0.126 ± 0.0066 0.126 ± 0.0052

α = 0.001 0.145 ± 0.0064 0.126 ± 0.0042 0.130 ± 0.015

4.1.2 Performance Using 3D Motor Babbling

The motor babbling method used (see section 3.3.2) for the three-dimensional task
space has no other meta-parameters than those of the neural network. The results
for those are presented in table 4.1. As pointed out in section 3.3.5, the error
is given separately for different regions in the joint space. Parameter ρ gives the
relative distance of the position from the joint medians to the joint limits. At
ρ = 1 the joints are at their limit.

The first interesting fact is that the values for each distance are close together,
independent of the number of hidden neurons and learning rate. One hypothesis
is that the errors are due to limitations of the model: it cannot represent the
underlying process more precisely. In the joint centers this can be due to redundant
joint positions. If more than one joint configuration results in the same task space
position, averaging between them will cause errors. In the six-dimensional case
this is not possible; section 4.1.4 will show the influence of those configurations.
The joint limits represent discontinuities: they cannot be modeled accurately by a
MLP. The errors go up considerably the closer they are approached.

35

Chapter 4. Experimental Results

103 104 105 106 107

iterations [-]

0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

e
rr

o
r

[-
]

learning error

(a) Using a learn rate of α = 0.01

103 104 105 106 107

iterations [-]

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

e
rr

o
r

[-
]

learning error

(b) Using a learn rate of α = 0.001

Figure 4.1: The training errors for h = 40: (a) α = 0.01, (b) α = 0.001. Averaged
other five samples, smoothed over 10 data points.

36

Chapter 4. Experimental Results

A closer look at the learning errors over the iterations in fig. 4.1 show that
while a lower learning rate affects the learning speed only slightly, it continues
to learn even after 106 iterations. This holds true even for the simplest tested
configuration with only 10 hidden neurons. That the learning stops earlier for the
higher learn rate can suggest oscillations around the optimal solution. The fact
that the learning speed is only slightly reduced by the lower learning rate also
suggests a high influence of random noise.

The test errors during learning (see fig 4.2) show a similar picture to the learn-
ing errors. For the higher learning rate, learning again comes to a halt at 106

iterations. With the lower learning rate it can be seen that the errors close to the
joint limits are still being reduced while the errors in the center remain. This is
consistent with the results of the other tested configurations. The problem of dual
configurations can limit the precision in the center, so additional examples do not
lead to any improvement. The errors at the joint limits can be reduced, since a
better approximation is needed.

The errors for the test positions (see fig. 4.3a) are showing a systematic offset.
The actual direction of this is different for each trained neural network. The
directions of the errors further outside in the workspace seem more random. Some
of the positions at the joint limits seem to be erratic, while others are close to the
real value. Because most of these positions are at the border of the workspace,
this shows that goal positions at the edge or outside of the workspace can lead to
irregular movement. The fact that the error in the center of the workspace has the
form of a constant offset has the advantage that it does affect relative movements
less, meaning that the position can be easily adjusted.

4.1.3 Performance Using 3D Goal Babbling

Unlike motor babbling, goal babbling has an excess of parameters that can be
adjusted. These are:

• εX The intended step size

• eθ the random noise of the joint positions

• phome probability of a home movement, after a boundary is hit

Additionally to these parameters, the algorithm can be altered in many ways:
The weight adjustments, which promote efficient movements (see eq. 2.17) or
movements which move into the right direction(see eq. 2.18), can be included or
ignored. The NN can be trained directly after each new positions, or after a certain
number of them.

37

Chapter 4. Experimental Results

103 104 105 106 107

iterations [-]

0.00

0.05

0.10

0.15

0.20

0.25

a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

m
]

position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(a) Using a learn rate of α = 0.01

103 104 105 106 107

iterations [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

m
]

position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(b) Using a learn rate of α = 0.001

Figure 4.2: The test errors for h = 40: (a) α = 0.01, (b) α = 0.001. Averaged
other five samples, smoothed over 10 data points.

38

Chapter 4. Experimental Results

x [m]

0.10
0.15

0.20
0.25

0.30
0.35

y [
m

]

0.42
0.40

0.38
0.36

0.34
0.32

0.30
0.28

0.26
0.24

z
[m

]

0.15

0.10

0.05

0.00

0.05

actual positions
target positions

(a) The target and actual positions, ρ = 0.1

x [m]

0.4 0.3 0.2 0.10.0 0.1 0.2 0.3 0.4 0.5

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

z
[m

]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

actual positions
target positions

(b) The target and actual positions, ρ = 0.5

39

Chapter 4. Experimental Results

x [m]

0.4 0.3 0.2 0.10.0 0.1 0.2 0.3 0.4 0.5

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

z
[m

]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

actual positions
target positions

(c) The target and actual positions, ρ = 0.75

x [m]

0.4 0.3 0.2 0.10.0 0.1 0.2 0.3 0.4 0.5

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

0.3

z
[m

]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

actual positions
target positions

(d) The target and actual positions, ρ = 1

Figure 4.3: The test positions of a specific NN for the different values of ρ. The
network parameters are: h = 40, α = 0.001

40

Chapter 4. Experimental Results

Since not all of these can be explored fully, this section explains the influence
each of them has. The parameters of the NN have again only a limited influence
on the result. Table 4.2 shows the results for the different configurations. It is
instantly apparent, that while the error at the center is low, in the more distant
positions of the work space it becomes larger very quickly. The errors in the center
are significantly lower than those achieved with motor babbling, which suggests
that the weight adjustment mechanisms are successful in reducing the influence of
redundant manipulator configurations.

Table 4.2: The results of the experiments for three-dimensional goal babbling.
Mean value and 95% confidence interval of five samples. Activated weighting
functions. εX = 0.02, eθ = 0.02, phome = 0.1

(a) Mean error at positions close to joint medians

ρ = 0.1 h = 10 h = 40 h = 120

α = 0.01 0.0222 ± 0.011 0.0147 ± 0.008 0.0226 ± 0.022

α = 0.001 0.0536 ± 0.021 0.0202 ± 0.0175 0.0297 ± 0.035

(b) Mean error at positions at ρ = 0.5

ρ = 0.5 h = 10 h = 40 h = 120

α = 0.01 0.184 ± 0.067 0.137 ± 0.037 0.153 ± 0.084

α = 0.001 0.237 ± 0.075 0.153 ± 0.058 0.220 ± 0.13

(c) Mean error at positions at ρ = 0.75

ρ = 0.75 h = 10 h = 40 h = 120

α = 0.01 0.262 ± 0.056 0.221 ± 0.048 0.220 ± 0.081

α = 0.001 0.325 ± 0.069 0.230 ± 0.024 0.303 ± 0.11

(d) Mean error at positions at ρ = 1.0, at the joint limits

ρ = 1 h = 10 h = 40 h = 120

α = 0.01 0.304 ± 0.058 0.273 ± 0.058 0.262 ± 0.073

α = 0.001 0.379 ± 0.048 0.283 ± 0.016 0.343 ± 0.074

A closer look at the test and learning errors of one configuration in fig. 4.4
gives additional insight. As can be seen the learning is in the beginning very slow.
The network is initialized such that it always outputs joint positions very close to
the home position, independent of the goal position (see also fig. 4.5). The only
new examples are therefore introduced by the random perturbation of the joint
angles, defined by eθ. The weights which are chosen to judge the effectiveness
of such movements are also very low, since they will only randomly move into
the correct direction. Choosing a high perturbation of the joint angles leads to
another problem: The more random the movement is, the closer this solution is to
just motor babbling, thereby defeating the purpose.

41

Chapter 4. Experimental Results

104 105 106 107

iterations [-]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

e
rr

o
r

[-
]

learning error

(a) Learning errors

104 105 106 107

iterations [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

m
]

position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(b) Testing errors

Figure 4.4: The test and learning errors for h = 40, α = 0.01: (a) learning
errors (b) test errors. Averaged other two samples, smoothed over 10 data points.
εX = 0.02, eθ = 0.02, phome = 0.1

42

Chapter 4. Experimental Results

The second important observation is that when the error terms first go down
the learning errors go up. This is contrary to not only the way it is in motor
babbling, but also the intuition. The reason for this behavior is that the learning
error only exists once new examples are shown to the network. While motor
babbling starts learning instantly and with a high error, goal babbling explores
the workspace while keeping the error constant. The error is kept in check by
the mechanism that keeps the goal babbling inside its known regime. Because the
speed of learning is dependent on the gradient, motor babbling can initially learn
much faster. Since a high value for eθ emulates motor babbling, this can explain
why it was found advantageous for an implementation with few dof [3].

After the error terms first decline, they rise again and oscillate. While often
times this would be a sign of overfitting, in this case it is due to another phe-
nomenon: After the network has acquired some knowledge about how to move,
it starts exploring the local surroundings. If the workspace is complex, as it is in
this case, the algorithm can get lost in its more distant parts and forget about the
space closer to the home position. Home movements are implemented to counter-
act this behavior. But, if the probability of home movements phome is chosen too
high, it hinders the algorithms potential to explore the outer regions. But if it is
chosen too low it can become unstable, resulting in uncontrolled drift in the outer
regions. This is also the primary reason why the network should only be updated
after it has collected data from a number of positions: updating it instantly on
each sample will introduce drift in the outer regions, since the home positions are
not included in the update. The dilemma of exploration is caused primarily by
the structure of the workspace. Unlike previous applications the workspace of the
robot is very complex, resembling roughly a spherical shell. This means that sin-
gle straight movements cannot cross the workspace. The outer regions are thereby
very difficult to reach for the algorithm. A solution to this might be to use spheri-
cal coordinates instead of Cartesian. This would allow movements which are linear
in the configuration space to traverse the workspace [41].

The way goal babbling explores the workspace is shown in fig. 4.5. As pointed
out before, the exploration only starts after a significant amount of random move-
ments. Once the networked learned how to move locally the exploration acceler-
ates.

One network was trained for 108 examples. While the good result of an error of
{0.0085, 0.0482, 0.114, 0.184} meters suggests that the network continued to learn
after 107 examples, its learning graph makes clear that these results were achieved
multiple times during learning.

In conclusion it can be said that goal babbling does work even for this complex
workspace, but its accuracy, while very good in the center, reduces quickly for
positions outside of it. Especially problematic can be, that during learning of the
periphery of the workspace, the overall accuracy of the other positions suffers. A
possible solution might be to convert the workspace into spherical coordinates.

43

Chapter 4. Experimental Results

x [m]

0.195
0.200

0.205
0.210

0.215
0.220

0.225
0.230

y [
m

]

0.355

0.350

0.345

0.340
0.335

0.330

z
[m

]

0.065

0.060

0.055

0.050

0.045

0.040

0.035

positions
home position
detected boundary
homewalk position

(a) The discovered workspace after 105 iterations.

x [m]

0.4
0.2

0.0
0.2

0.4

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

z
[m

]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

positions
home position
detected boundary
homewalk position

(b) The discovered workspace after 106 iterations.

44

Chapter 4. Experimental Results

x [m]

0.4
0.2

0.0
0.2

0.4

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

0.3

z
[m

]

0.4
0.3
0.2
0.1

0.0

0.1

0.2

0.3

0.4

0.5

positions
home position
detected boundary
homewalk position

(c) The discovered workspace after 108 iterations.

Figure 4.5: Workspace discovery with goal babbling. While for 105 (a) discovery
has not yet set in, at 106 (b) iterations a big portion of the workspace is covered.
After 108 (c) iterations the workspace is mostly covered, though positions in the
periphery are sparse. The amount of shown positions are limited to 105 each.
Detected boundaries, the home position and home movements are illustrated. εX =
0.02, eθ = 0.02, phome = 0.1

4.1.4 Performance Using 6D Motor Babbling

Including the orientation in the results of motor babbling can achieve a higher
accuracy, since redundant configurations do not exist anymore. While the input
space has more dimensions, the size of the actual workspace is not increased. This
means that each data point just contains more information to generate the IK
solution. The downside of this is discussed in section 4.2. The results in table 4.3
reflect the higher positional accuracy in the center. More specifically, the positions
close to the joint medians (ρ = 0.1 and ρ = 0.5) have a lower positioning error.
The positions close to the joint limits show an even higher positioning error than
those of the three-dimensional case. Redundant configurations are not likely to
exist close to the joint limits, so there is no advantage to be gained by including
the orientation. That the error is even higher at the joint limits can be the result
of two factors:

45

Chapter 4. Experimental Results

• The NN needs to learn the orientation as well, which influences learning
behavior.

• The way of acquiring data has changed: This implementation uses realistic
joint movements. They are less likely to come close to the limits.

Unlike the three-dimensional case, this version shows a significantly changed
error for some configurations. Especially the version with h = 40 falls off behind the
configurations with more neurons in the hidden layer. This leads to the assumption
that this more complex scenario can make proper use of the additional capabilities
of such a network.

Table 4.3: The results of the experiments for six-dimensional motor babbling.
Mean value and 95% confidence interval of ten samples. Linear output layer.

(a) Error at positions close to joint medians

ρ = 0.1 h = 40 h = 120 h = 160

α = 0.01 0.0288 ± 0.011 0.0201 ± 0.0097 0.0154 ± 0.0042

α = 0.001 0.0223 ± 0.0047 0.0270 ± 0.0092 -

(b) Error at positions at ρ = 0.5

ρ = 0.5 h = 40 h = 120 h = 160

α = 0.01 0.0395 ± 0.0063 0.0324 ± 0.0040 0.0322 ± 0.0061

α = 0.001 0.0370 ± 0.0027 0.0337 ± 0.0042 -

(c) Error at positions at ρ = 0.75

ρ = 0.75 h = 40 h = 120 h = 160

α = 0.01 0.0669 ± 0.0043 0.0503 ± 0.0047 0.0536 ± 0.0072

α = 0.001 0.0663 ± 0.0023 0.0513 ± 0.0034 -

(d) Error at positions at ρ = 1.0, at the joint limits

ρ = 1 h = 40 h = 120 h = 160

α = 0.01 0.1739 ± 0.0067 0.1547 ± 0.0047 0.1533 ± 0.0072

α = 0.001 0.1835 ± 0.0058 0.1722 ± 0.0052 -

Additionally to the here shown results with a linear output layer, the tests were
done with a tanh activation function in that layer. The results show no significant
differences in performance.

The graphs of the test errors (see fig. 4.6) show that even higher learn rates
still leave learning potential after 106 iterations. This is also a sign of the added
complexity of including the orientations. The learning behavior of the orientations
themselves is very similar to that of the positions. The errors close to the joint
limits are higher than the errors in the center.

46

Chapter 4. Experimental Results

103 104 105 106 107

iterations [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

m
]

position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(a) Test error position

103 104 105 106 107

iterations [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

a
v
e
ra

g
e
 e

rr
o
r

o
ri

e
n
ta

ti
o
n
 [

-]

orientation error, ρ= 0. 1

orientation error, ρ= 0. 5

orientation error, ρ= 0. 75

orientation error, ρ= 1

(b) Test error orientation

Figure 4.6: The test and learning errors for h = 120, α = 0.01: (a) position errors
(b) orientation errors. Averaged other ten samples, smoothed over 10 data points.

47

Chapter 4. Experimental Results

Table 4.4: Test error after 108 examples.

h = 120 ρ = 0.1 ρ = 0.5 ρ = 0.75 ρ = 1

error position [m] 0.0154 0.0255 0.0386 0.147

error orientation [-] 0.284 0.162 0.236 0.904

One configuration was trained for 108 samples and achieved a performance
that matched the other versions at positions close to the joint medians, but out-
performed them at the positions close to the joint limits (see table 4.4). While
collecting that many data points is not be option when working with a real robot,
repeated training on the same dataset could have the same effect.

4.1.5 Performance Using 6D Goal Babbling

The position errors of six-dimensional goal babbling can be seen in table 4.5. The
error close to the joint medians is very low for all configurations. This is due to the
frequently visited home position. The errors at ρ = 0.5 are significantly lower for
configurations with a higher amount of neurons in the hidden layer. This behavior
is similar to six-dimensional motor babbling, only that it is even more pronounced
here. While for motor babbling the better approximation capabilities of more
hidden neurons results in just a lower error, the effect is more extreme for goal
babbling: the algorithm can only move towards positions it knows, if a position
is unknown it will detect a boundary and continue in a different direction. While
this behavior keeps the majority of the solutions with few neurons in the hidden
layer from exploring further outwards (see fig. 4.7), the large confidence interval
suggests what can be verified when looking into individual results: some of the NNs
did successfully learn these positions and had a significantly lower error. Further
outside in the joint space the errors are going up for all configurations. This is the
result of the same problem as in the three-dimensional case: those positions are
visited less frequently since they cannot be reached by a single movement.

The errors in the orientation follow the pattern of the position errors: they are
low in the center and grow considerably further outside. This is most pronounced
when the network fails to explore the considered region.

The learning curves of the well-performing configuration (see fig. 4.8) show
that the error decreases continuously for both the orientation and the position.
This is in hard contrast to three-dimensional goal babbling, in which the error
often increases over time. It can therefore be assumed that in case of complex
workspaces the additional information given by the orientation helps to reduce the
amount of inconsistent examples and thereby stabilizes learning. This solution is
still significantly outperformed by six-dimensional motor babbling at all positions
except the very center of the workspace.

48

Chapter 4. Experimental Results

x [m]

0.3 0.2 0.10.0 0.1 0.2 0.3 0.4 0.5

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1

z
[m

]

0.4

0.3

0.2

0.1

0.0

0.1

0.2

positions
home position
detected boundary
homewalk position

(a) Exploration sample, h = 40, α = 0.01

x [m]

0.4
0.2

0.0
0.2

0.4

y [
m

]

0.5
0.4

0.3
0.2

0.1
0.0

0.1
0.2

0.3

z
[m

]

0.4
0.3
0.2
0.1

0.0

0.1

0.2

0.3

0.4

0.5

positions
home position
detected boundary
homewalk position

(b) Exploration sample, h = 160, α = 0.01

Figure 4.7: Two examples of the exploration after 107 iterations: (a) h = 40,
α = 0.01 (b) h = 160, α = 0.01.

49

Chapter 4. Experimental Results

104 105 106 107

iterations [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30
a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

m
]

position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(a) Test error position

104 105 106 107

iterations [-]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

a
v
e
ra

g
e
 e

rr
o
r

o
ri

e
n
ta

ti
o
n
 [

-]

orientation error, ρ= 0. 1

orientation error, ρ= 0. 5

orientation error, ρ= 0. 75

orientation error, ρ= 1

(b) Test error orientation

Figure 4.8: The test errors for h = 160, α = 0.001 (a) position (b) orientation.
Average over 3 samples, smoothed over 10 data points.

50

Chapter 4. Experimental Results

Table 4.5: The results of the experiments for six-dimensional goal babbling. Mean
value and 95% confidence interval, three samples. εX = 0.02, eθ = 0.02, phome = 0.1

(a) Error at positions close to joint medians

ρ = 0.1 h = 40 h = 120 h = 160

α = 0.01 0.039 ± 0.0077 0.034 ± 0.062 0.016 ± 0.002

α = 0.001 0.089 ± 0.043 0.0069 ± 0.0019 0.007 ± 0.001

(b) Error at positions at ρ = 0.5

ρ = 0.5 h = 40 h = 120 h = 160

α = 0.01 0.183 ± 0.076 0.123 ± 0.247 0.082 ± 0.026

α = 0.001 0.296 ± 0.132 0.047 ± 0.002 0.059 ± 0.020

(c) Error at positions at ρ = 0.75

ρ = 0.75 h = 40 h = 120 h = 160

α = 0.01 0.221 ± 0.054 0.180 ± 0.202 0.155 ± 0.034

α = 0.001 0.308 ± 0.103 0.125 ± 0.0238 0.112 ± 0.048

(d) Error at positions at ρ = 1.0, at the joint limits

ρ = 1 h = 40 h = 120 h = 160

α = 0.01 0.258 ± 0.065 0.253 ± 0.134 0.243 ± 0.042

α = 0.001 0.297 ± 0.064 0.218 ± 0.037 0.208 ± 0.025

In order to judge the effect of further learning, one configuration (h = 120,
α = 0.01) is trained for 108 iterations. The results of {0.0075, 0.0582, 0.137, 0.223}
meters for the corresponding values of ρ are better than the average of those with
the same configuration but are not better than the overall best. The learning graph
suggests that the results did not improve considerably after 107 iterations.

4.1.6 Performance of the Relative IK Solution

Table 4.6 shows the results for the training of a network for relative IK. The
results are very different from all the previous since they represent relative errors:
the network is given an intended movement of 0.01m in each direction and the
result is divided by the length of the intended movement (see section 3.3.5) For
the configurations at the joint limits this does mean that some target positions
are unreachable since they are outside of the workspace. Therefore the results for
ρ = 1 are omitted.

The relative errors for all positions are rather high. This can point towards a
number of different problems. Even though the movements are relative, dual posi-
tions are still an issue. It can be possible to achieve the same move direction with

51

Chapter 4. Experimental Results

Table 4.6: The results of the experiments for three-dimensional motor babbling
training a relative IK solution. 0.01m intended step size, relative error. Mean
value and 95% confidence interval, three samples.

(a) Error at positions close to joint medians

ρ = 0.1 h = 10 h = 40 h = 120

α = 0.01 0.775 ± 0.059 0.747 ± 0.036 0.729 ± 0.029

α = 0.001 0.761 ± 0.025 0.713 ± 0.030 0.695 ± 0.057

(b) Error at positions at ρ = 0.5

ρ = 0.5 h = 10 h = 40 h = 120

α = 0.01 0.912 ± 0.042 0.777 ± 0.032 0.720 ± 0.013

α = 0.001 0.899 ± 0.021 0.780 ± 0.014 0.723 ± 0.034

(c) Error at positions at ρ = 0.75

ρ = 0.75 h = 10 h = 40 h = 120

α = 0.01 1.05 ± 0.007 0.863 ± 0.024 0.783 ± 0.027

α = 0.001 1.05 ± 0.019 0.882 ± 0.028 0.796 ± 0.038

different joint movements. Since the relative movements are small the influence of
this issue is smaller in comparison to the global IK solutions (see section 2.3.1).
The other explanation lies in the big input space. Not only must each position
be learned, but also each direction for each position. The result of this can be a
very slow learning process. As for the different configurations: This approach does
benefit from the added capabilities of more neurons in the hidden layer. This is
especially true for positions closer to the joint limits.

Fig. 4.9 shows the test errors over the iterations for the simplest NN configu-
ration with ten hidden neurons and the most complex with h = 120. The simpler
network learns initially faster, but is then overtaken by the more complex network.
Learning is generally very slow for both, especially in the center configuration.

Because of the relative nature of the approach these results have only limited
meaning towards their practical usability. This is analyzed in section 4.2.

4.1.7 Performance in a Limited Workspace

Limiting the workspace by reducing the joint limits has numerous advantages:

• It can exclude positions with self-collisions

• It could improve the accuracy by reducing the search space

52

Chapter 4. Experimental Results

104 105 106 107

iterations [-]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

-]
position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(a) Relative test error, h = 10, α = 0.01

104 105 106 107

iterations [-]

0.5

1.0

1.5

2.0

2.5

3.0

a
v
e
ra

g
e
 e

rr
o
r

p
o
si

ti
o
n
 [

-]

position error, ρ= 0. 1

position error, ρ= 0. 5

position error, ρ= 0. 75

position error, ρ= 1

(b) Relative test error, h = 120, α = 0.001

Figure 4.9: The relative errors for(a) h = 10, α = 0.01 (b) h = 120, α = 0.001.
Average over 3 samples, smoothed over 10 data points.

53

Chapter 4. Experimental Results

• It linearizes the problem to some extent since the influence of each joint is
reduced

• The workspace is less complex and can be traversed easier

The disadvantage is that it arbitrarily reduces the capabilities of the manipu-
lator. Since self-collisions are depending on the current configuration of the robot,
for example sitting or standing, avoiding them by reducing the joint limits leads to
an overly conservative solution. It can be argued that self-collisions are best dealt
with during motion planning, because in this step collisions with external objects
also need to be considered and avoided. This is independent whether the motion
planning is done by an operator or autonomous.

Due to time constraints, the following experiments are done only once and
should be considered as mere indications and not as exact results. The reduced
joint limits are chosen such that they resemble previous work [3]. Since the test
set is different, and the experiments are only done once, the numbers can still not
be directly compared. Additionally, here the number of data points is limited and
not the number of movements, resulting in different sizes of acquired datasets.

Previous work suggests using a simple NN with h = 10. For goal babbling a
very high random perturbation term combined with a high learning rate is recom-
mended. Here a learning rate of α = 0.1 and a random perturbation of eθ = 0.1
are used, both are smaller than the ones recommended. With these values, an
error of {0.0204, 0.0190, 0.0338, 0.0613} meters can be achieved after 106 itera-
tions. This error term is considerably lower than all of those achieved for the full
workspace. When using a lower random perturbation of eθ = 0.02 instead, the
error becomes {0.0026, 0.0150, 0.0402, 0.0749} meters. Here the error in the center
of the workspace is considerably reduced, but the error outside of them is higher.
Using pure motor babbling on with the same NN parameters leads to a result of
{0.0124, 0.0155, 0.0215, 0.0388} meters. When comparing this to the goal babbling
solution with eθ = 0.1 it supports the assumption that it emulates motor babbling.
Unfortunately, this also makes it more prone to the problem of redundant config-
urations, as is noticeable as the higher error in the joint center. The performance
achieved with motor babbling does seem to be comparable with the one achieved
in the previous work.

While these numbers are only indication, they do show that a smaller task
space significantly reduces the positioning errors for both motor babbling and goal
babbling. Even though it obviously limits the movements of the manipulator, this
can be an option if a high accuracy is needed and offsets are not acceptable.

54

Chapter 4. Experimental Results

4.2 Evaluation of the IK Solutions in Simulation

With Pypot it is possible to use the same code to control the real robot and a
simulated version in V-rep. V-rep includes four different physics engines, which
can simulate dynamics, collisions and the joint servo motors. Accurate simulation
requires precise modeling of the system. The CAD model of the NICO robot is
an accurate kinematic description but does not possess all dynamical properties
of the real robot. Additionally, the PID controllers of the simulated servo motors
behaved inconsistent depending on the type of physics engine used. As a result,
the simulation is used to judge how the different solutions can be used practically
and not to get insight into the accuracy of the solution. In order to gain a certain
amount of comparability between the approaches, one grasping movement was
tested with all applicable solutions (see fig. 4.10). The main focus is still on general
remarks towards the usability. It also has to be mentioned that the forward model
used to train the NNs does seem to have some rotational offset which is currently
unaccounted for. The reason could lie in a rotation of the basis frame of the
forward model compared to the world coordinate system of V-rep. The influence
of this issue in practical use is limited.

The three-dimensional motor babbling solution enables the robot to approach
different positions throughout the task space. While the lower accuracy towards
extreme positions is noticeable, most of them include self-collisions and are as such
useless. The accuracy problems in the usable workspace are less of an issue, as long
as relative movements are concerned. Locally the errors generated by the NN have
the character of an offset, which has limited effect on the movements. Absolute
movements on the other hand are more affected. When positions are closer to the
corpus of NICO self-collisions are an issue and should be checked for in simulation.
Rotation of the end effector can be easily implemented as movements of the last
joint. The movements achieved are not as straight as those known from industrial
robots. This does give them a more human look. Some of the arm configurations
which the solution chooses are not possible for humans or are ineffective for us.
The robot often makes use of its elbow joint, which bends in both sides, unlike
the human elbow. Also the robot uses the shoulder joints to generate motions
pointing towards and from his body, while humans would generate those generally
more with the elbow. This behavior does reduce the human appeal of the robots
movements. The standard grasping movement could be performed without issues.

The goal babbling solution does not behave much different from the motor
babbling one. It is better suited for absolute movements near the joint centers,
since there the accuracy is higher. The bigger errors in other positions can cause
erratic movements. For most applications it seems that the motor babbling solution
is the better approach since it is more consistent. The standard grasping movement
could still be performed.

55

Chapter 4. Experimental Results

Using the six-dimensional solutions proves to be very difficult. Since it requires
the orientation of the end effector in world coordinates, those need to be specified.
Knowing them for a position is difficult, as is deducing whether or not a position
is reachable. When rotating the end effector at a certain position, the robot tries
to make use of all joints, and not just uses the wrist. A possible workaround
when using the six-dimensional solution is to use the three-dimensional in order
to reach for a position and use the six-dimensional for the rotation. The problem
with that lies in the offset of each solution, switching the NNs will move the end
effector. Additionally, the only rotation which is always available is easier and
better achieved by simply rotating the wrist joint. In order to follow the standard
grasping motion, another method to achieve three-dimensional movements is used:
the current orientation is used as the intended orientation. The result of this is not
the intended one, the errors add up quickly and the movement becomes unstable.
As such, using the six-dimensional solutions does not provide benefits over the
three-dimensional approaches.

The solution using relative motions has, as pointed out in section 2.6, a high
error in relation to the intended movements. This does become easily obvious when
using it for the standard grasping movement. Even small relative movements show
a very significant deviation from the target position. This can be remedied when
the target direction is updated each move step with the current direction to the
target (see section 3.4.2). This does however lead to curved movements, as it
first moves in the wrong direction and then slowly adapts it. Using the relative
IK solution iteratively does not work as expected. The generated joint positions
are seldom better than the original ones. Instead it often becomes unstable, and
the error term grows. Another issue of this relative solution is that close to joint
limits it can get stuck. This happens when the NN only outputs directions which
lead further along the already limited joints. In its current form, this relative IK
solution lacks the practicality of the three-dimensional approaches using absolute
coordinates. The ability to update the position still might make it useful when
coupled with external sensors such as the cameras in NICO’s head.

All of the found solutions have specific shortcomings. Because of its general
practicality and consistent learning behavior, the three-dimensional goal babbling
solution is the best approach for most situations. When a higher accuracy in the
center is needed, goal babbling can be the better choice. Alternatively the solution
can be trained on a limited portion of the workspace which improves the accuracy
greatly.

4.3 Evaluation Using the Real Robot

The main focus of this evaluation is to see how the planned movements behave on
the real robot in comparison to the simulation. This is no longer dependent on the

56

Chapter 4. Experimental Results

different approaches to generate the inverse kinematics. Therefore the following is
tested using one network trained with motor babbling.

Figure 4.10: The tested grasping movement. Dashed lines indicate point to point
movements, solid lines linear movements.

One obstacle in making the movements analogous to the simulation is lies in the
definition of the movement direction and joint limits. For Pypot, those are defined
in one file for both the simulation and the real robot. V-rep uses the URDF file
to define those parameters. Therefore, the definitions in both of these files need
to be identical and match the physical robot. The accuracy of the robot is not
thoroughly tested here. In general such tests require sophisticated measuring tools
and techniques, which lie outside of the scope of this work.

The operated movements are seemingly identical to those planned in simula-
tion. This opens up the possibility to do task planning using the simulation. This
can be especially useful to avoid collisions while using the real robot. The move-
ments themselves are still sometimes jerky during linear elements. This seems to
be the result of stick slip effects in the motors and can likely be fixed using differ-
ent parameters for the servo motors. Using the implemented controller NICO is
capable of performing grasping tasks (see fig. 4.11).

57

Chapter 4. Experimental Results

Figure 4.11: NICO grasping a towel.

58

Chapter 5

Discussion

Summery

The task is to design a neural network based controller for a humanoid robot
arm which enables it to perform grasping tasks. The arm of the Neural-inspired
companion (NICO) robot is a five degree of freedom (dof) manipulator equipped
with a gripper as its end effector. In order to enable effective movements, a solution
to the inverse kinematics (IK) problem needs to be found. Because closed-form
solutions to this problem are not always available and cannot adapt to changes
in the manipulators structure, a learning, neural network based approached is
chosen. Current research suggests two principal biologically inspired methods of
learning: goal babbling and motor babbling. Motor babbling relies on random
motor commands in order to generate the examples from which a model is trained.
In goal babbling, reaching movements are performed in task space. The model is
trained from the so far performed movements, which in turn enable it to improve it
reaching motions. As such, goal babbling is inherently an online learning method.

Since the amount of needed data can be high, the training is done on a, au-
tomatically from the model generated, mathematical forward kinematics solution.
The wrist joint the robot has little effect of the position of the end effector, but it is
very useful for controlling its orientation. As such, it needs to be incorporated into
a grasping solution. One challenge faced when learning IK is that of redundant
configurations achieving the same end effector positions. While learning, this leads
to inconsistent examples. Incorporating the orientation into the learning approach
can remedy this. It can also make proper use of the wrist joint. As using this
six-dimensional approach has proven difficult in practice, an additional relative IK
method is implemented. All mentioned methods are implemented, optimized in
their parameters and tested for their accuracy. To use them to control the robot,
both in simulation and reality, methods using the Pypot framework are imple-
mented. These allow for linear and point to point movements in the task space.

59

Chapter 5. Discussion

The practicality of the different IK solutions is tested in simulation. It is then
shown that these translate well into usage on the real robot.

Specifically, the following steps were undertaken:

• Automatic computation of the forward kinematics from the robot’s design
description files.

• Implementation of motor babbling and goal babbling methods using a multi-
layer perceptron (MLP).

• Extension of these methods to include the orientation of the end effector.

• Implementation of an approach to learn relative IK.

• Parameter optimization and performance comparison of the methods.

• Implementation of basic trajectory generation for task space movements.

• Tests of the practical applicability of all the developed methods in simulation.

• Final testing on the real robot.

Conclusions

The results of the approaches to learning the IKs of the robot arm showed signif-
icant differences in their precision, workspace coverage, and most important their
practical usability.

The precision of three-dimensional motor babbling suffers significantly in the
center of the workspace due to the influence of redundant configurations. On the
other hand, it learns reliably and shows the best performance at the periphery of
the workspace. The errors in the middle have the form of an offset, this limits their
influence on relative movements. Both the amount of hidden neurons and the learn-
ing rate have limited influence on the performance. This hints at the limitations
in the model: the MLP is not capable of dealing with redundant configurations
and the discontinuities at the joint limits, regardless of those parameters.

Three-dimensional goal babbling achieved a very high precision in the center.
This is due to both the inclusion of a home position which is defined by its joint
configuration, as well as the weighting scheme which favors efficient movements.
Outside of the center the algorithm showed significant difficulty in further explo-
ration. The reason is that, due to the complex structure of the workspace, straight
movements cannot traverse it. This in conjunction with the fact that such po-
sitions are more difficult to learn for an MLP, as shown by the motor babbling
approach, leads to high errors further away from the joint medians.

60

Chapter 5. Discussion

The inclusion of the orientation in six-dimensional motor babbling results in
a significantly higher precision in the center of the workspace. The outer areas
show slightly worse results. This can be due to the added complexity of including
the orientation or the choice of data generation, since the six-dimensional method
included realistic movements, rather than randomly generated positions. Unlike
the three-dimensional method, this approach benefits from the added capabilities
of a higher number of neurons in the hidden layer.

Goal babbling can also make use of the added orientation information. While
the precision in the center does not benefit, the other areas are explored more
reliable. This is true only for the more complex neural networks: as with six-
dimensional motor babbling, goal babbling in higher dimensions does benefit from
the added capabilities. The effect is even more pronounced for goal babbling:
since further exploration depends on the achieved precision in the known areas,
exploration can halt for suboptimal solutions. Six-dimensional goal babbling still
has troubles reaching the outer regions of the workspace, the complexity of it
remains a problem. This work has shown that goal babbling can be performed
in a six-dimensional target space which includes the orientation. But, for this
complex workspace and a comparatively low amount of degrees of freedom in the
manipulator, it gets outperformed by motor babbling.

Confining the workspace to a certain region by reducing the joint limits im-
proves the accuracy greatly. This is due to not only the overall reduced problem
size, but also the simpler structure of the workspace and the lower influence of
redundancy. The disadvantage lies in the arbitrary restriction of the capabilities
of the manipulator.

The relative IK solution shows a high error in comparison to the attempted
movements. The overall learning is slow regardless of the chosen NN parameters,
but more complex networks do achieve a higher performance. The slow learn can
be due to the very large input space: the network needs to learn about all possible
move directions for each joint space position.

When using these solutions to move the robot arm in simulation, the results
achieved by the three-dimensional motor babbling method prove to be the most
viable. While the accuracy in the center is low, the more consistent movements
outside of it outweigh it. When using relative movements, the position errors
are less notable, since they have the structure of an offset. Using the current
goal babbling solution can be an option if a higher accuracy in the workspace
center is needed. The six-dimensional methods, while offering a higher precision,
are unreasonably difficult to use. The NN always requires the orientation to be
defined and generating achievable end effector orientations for given positions is
not trivial. Trying to overcome this by always using the current orientation is not
successful, the errors add up too quickly. Switching to a six-dimensional option
after achieving a position just to control the orientation has two disadvantages: the
position will be changed due to different offsets and the orientation can be better

61

Chapter 5. Discussion

adjusted by directly controlling the wrist joint. The relative IK method has a high
error when used without any corrections. When the goal direction is updated after
each step the accuracy is improved, but the generated movements are often curved
towards the goal.

The generated movements translate well to the real robot. While its dynamic
behavior still needs improvement, mostly by optimizing the parameters of its joint
servos, it follows the trajectories as expected. This enables the robot to perform
grasping movements.

Future Work

While the overall task of enabling the robot to use its arms in a goal directed
manner is achieved, each of the approaches used to learn the IK have specific
shortcomings and opportunities for enhancements.

The goal babbling methods have troubles exploring the outer regions of the
complex workspace. This might be alleviated by switching from Cartesian task
space coordinates to spherical coordinates as it would allow the goal babbling
movements to traverse the task space more easily [41].

Even when using six-dimensional descriptions of the end effector configuration,
which eliminate redundancies, the MLP has significant difficulties in learning a
reasonable solution. One influence can be the non-continuities at the workspace
boundaries. Another problem can be that the learning process at a distinct position
can affect the whole network. As such, a high gradient in distant positions can
have a negative impact on the global learning process. Therefore, other regression
techniques such as locally-linear maps might be better suited [42, 50].

Learning is currently done using the forward kinematics solution. Switching to
the real robot can be advantageous as positioning errors and mechanical defects
can be accounted for. This requires measurement of the end effector position, likely
using to a camera system such as NICOs stereo vision. As this limits the amount
of data points that can be created in reasonable time, the methods need to be
optimized according to that. Using motor babbling to generate the data points
and then performing offline learning can be a reasonable option, as it disjoints
the data creation from the training. This would allow optimizing the regression
without any restrictions.

Currently the robot still shows some jerky movements. This can be alleviated
by optimizing the parameters of the joint servos, for example using the Ziegler-
Nichols tuning rules [57]. The movements of the robot sometimes do not resemble
those of human being. This is partially due to the elbow joint which can bend both
ways, unlike the human elbow. Restricting this joint would reduce the workspace,
but could make the movements look more akin to humans.

62

Appendix A

Nomenclature

Symbol Units Description

{A} − frame of reference

eθ − random joint perturbation

Fee − generalized forces and torques at the
end effector

G − vector of gravity terms

M − mass matrix

J − robot Jacobian matrix

see m end effector position

R − rotation matrix

T − transform

t s time

V − vector of centrifugal and Coriolis forces

vee
m
s

end effector speed

xi − neural network input

yi − neural network output

W − neural network weights

wd − goal babbling weighting for movements
in teh right direction

we − goal babbling weighting for efficient
movements

wt − total goal babbling weighting

εX − goal direction

θ rad joint position

θ̇ rad
s

joint speed

τ Nm joint torque

63

Appendix B

Instructions for the Source Code

Prerequisites

The code relies on the following software packages and frameworks:

• Python version 2.7.12

• Pybrain version 0.3

• V-REP version 3.2.3

• Numpy version 1.8.2

• Pypot version 2.10.0

• Matplotlib version 1.5.1

• transformations.py version 2015.07.18

Other versions may also work, but are untested.

Description of the Source Files

robot.py Contains the URDF parser and the forward kinematics solution.

neuralNetwork.py Wrapper for Pybrain. Contains the structure of the neural
network.

inverseKinematics.py Contains classes to handle motor and goal babbling in
three dimensions. Also used to to give solutions for the inverse kinematics.

64

Appendix B. Source Code Instructions

inverseKinematics6D.py Different version used for 6D.

movingRobot.py Contains methods to handle moving the robot, both the simu-
lation and the real robot. Contains trajectory generation for linear and point
to point movements. Can use the standard 3D ik solution or the relative ver-
sion.

movingRobot6D.py The same as for the 3D version, can additionally handle
rotations.

trainingXX.py Script files automating learning across different configurations.

printLearningCurves.py Script to automatically generate learning and testing
curves.

Usage Scenarios

Moving the Robot

At the beginning of the movingRobot.py file are a couple of bool variables that are
used to configure the environment. important is isSimulation: if set to true, the
simulation is controlled, false tries to control the real robot. Also the correct .json
file and neural network need to be specified inside the code. A sample movement
can look like this:

myNico = robotInPypot ()
myNico . switchNN (” absoluteIK ”)
time . s l e e p (2)
myNico . moveToPoint ([0 . 0 , −0.3 , 0 . 8] , 10)
time . s l e e p (2)
myNico . moveToPoint ([0 . 3 0 , −0.2 , 0 . 8] , 10)
myNico . openGripper ()
time . s l e e p (2)
myNico . moveLinRel ([0 . 0 5 , 0 . 0 , 0 . 0] , 5)
myNico . c l o s eGr ippe r ()

Training the Neural Network

The training can be done by either the trainingXX.py script files or directly by
the inverseKinematics files. The training files handle using multiple configurations
and saving the learning progress for later plotting. Training a neural network via
motor babbling can for example be done like this:

65

Appendix B. Source Code Instructions

myIK = motorBabblingIK (120 , 0 . 01) #120 Hidden Neurons , 0.01 LR
myIK . learnIKBatched (10000000 , 1000) #10M I t e r a t i o n s
print myIK . tes t IK (0 . 1)
myIK . p lo tTes tPo int s (’ Te s tPos i t i on sC lo s e . pdf ’)
print myIK . tes t IK (0 . 5)
myIK . p lo tTes tPo int s (’ TestPositionsMedium . pdf ’)
print myIK . tes t IK (0 . 7 5)
myIK . p lo tTes tPo int s (’ Tes tPos i t i onsFar . pdf ’)
print myIK . tes t IK (1)
myIK . p lo tTes tPo int s (’ Tes tPos i t i onsL imi t . pdf ’)
myIK . plotDiscoveredPointsMB (’ Exp lo redPos i t i ons . pdf ’)
myIK .myNN. saveWeights (”TrainedNetwork . xml”) #saves the NN
with open(” MotorBabbl ing learn ing . j son ” , ’w ’) as f :

j s on . dump(myIK . t e s tRe su l t s , f) #saves the l e a rn ing progre s s
f . c l o s e d

66

Bibliography

[1] Adept Technology Inc. Adept cobra s 600 datasheet. URL: www.adept.com/
products/robots/scara/cobra-s600/.

[2] Jose Alvarez-Ramirez, Ilse Cervantes, and Rafael Kelly. Pid regulation of
robot manipulators: stability and performance. Systems & control letters,
41(2):73–83, 2000.

[3] Atif Mahboob. Mechanical Design of the arms and Neural Arm control for the
Humanoid Robot Platform Nimbro-OP. M.sc. thesis, University of Hamburg,
2015.

[4] Jerome Barraquand and Jean-Claude Latombe. Robot motion planning: A
distributed representation approach. The International Journal of Robotics
Research, 10(6):628–649, 1991.

[5] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose,
pseudoinverse and damped least squares methods (april 2004). Unpublished,
available at http://www. math. ucsd. edu/˜ sbuss/ResearchWeb/ikmethods/ik-
survey. pdf, 2004.

[6] Fabrizio Caccavale, Ciro Natale, Bruno Siciliano, and Luigi Villan. Integra-
tion for the next generation: embedding force control into industrial robots.
Robotics & Automation Magazine, IEEE, 12(3):53–64, 2005.

[7] Stephen K Chan and Peter D Lawrence. General inverse kinematics with the
error damped pseudoinverse. In Robotics and Automation, 1988. Proceedings.,
1988 IEEE International Conference on, pages 834–839. IEEE, 1988.

[8] R Clavel. Device for the movement and positioning of an element in space,
1990. US 4976582.

[9] John J Craig. Introduction to robotics: mechanics and control, volume 3.
Pearson Prentice Hall Upper Saddle River, 2005.

[10] Yiannis Demiris and Anthony Dearden. From motor babbling to hierarchical
learning by imitation: a robot developmental pathway. 2005.

67

www.adept.com/products/robots/scara/cobra-s600/
www.adept.com/products/robots/scara/cobra-s600/

Bibliography

[11] Jacques Denavit. A kinematic notation for lower-pair mechanisms based on
matrices. Trans. of the ASME. Journal of Applied Mechanics, 22:215–221,
1955.

[12] Diconary.com LLC. Dictionary.com unabridged, May 2016. URL: http://
www.dictionary.com/browse/robot.

[13] Fanuc Robotics America Inc. F-200ib datasheet, 2005. URL: www.

fanucamerica.com/cmsmedia/datasheets/F-200iB%20Series_9.pdf.

[14] Inria Flowers. Pypot sdk documentation, 2016. URL: github.com/

poppy-project/pypot.

[15] Michael A Goodrich and Alan C Schultz. Human-robot interaction: a survey.
Foundations and trends in human-computer interaction, 1(3):203–275, 2007.

[16] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jerome Mon-
ceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno Maisonnier.
The nao humanoid: a combination of performance and affordability. CoRR
abs/0807.3223, 2008.

[17] H Heiss. Roboterbewegungen mit bahninterpolation und überschleifen. VDI
BERICHTE, 1094:569–569, 1993.

[18] Clint Heyer. Human-robot interaction and future industrial robotics applica-
tions. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 4749–4754. IEEE, 2010.

[19] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[20] Du Q Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision, 35(2):155–164, 2009.

[21] Trade Industrial Machinery Division Ministry of Economy and Japan Indus-
try.

[22] Hiroshi Ishiguro. Interactive humanoids and androids as ideal interfaces for
humans. In Ernest Edmonds, Doug Riecken, Cécile L. Paris, and Candace L.
Sidner, editors, the 11th international conference, page 2, 2006. doi:10.1145/
1111449.1111451.

[23] Lydia E Kavraki, Jean-Claude Latombe, and E Latombe. Probabilistic
roadmaps for robot path planning. 1998.

[24] Charles A Klein and Ching-Hsiang Huang. Review of pseudoinverse control
for use with kinematically redundant manipulators. Systems, Man and Cy-
bernetics, IEEE Transactions on, (2):245–250, 1983.

68

http://www.dictionary.com/browse/robot
http://www.dictionary.com/browse/robot
www.fanucamerica.com/cmsmedia/datasheets/F-200iB%20Series_9.pdf
www.fanucamerica.com/cmsmedia/datasheets/F-200iB%20Series_9.pdf
github.com/poppy-project/pypot
github.com/poppy-project/pypot
http://dx.doi.org/10.1145/1111449.1111451
http://dx.doi.org/10.1145/1111449.1111451

Bibliography

[25] Kuka AG. Kuka kr 60-3 datasheet. URL: www.kuka-robotics.com/usa/en/
products/industrial_robots/medium/kr60_3/.

[26] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science
& Business Media, 2012.

[27] ABB Ltd. Datenblatt abb irb 360, 2013. URL: new.abb.com/products/

robotics/de/industrieroboter/irb-360.

[28] Robotis Ltd. Dynamixel sdk documentation, 2010. URL: support.robotis.
com/en/techsupport_eng.htm#software/dynamixelsdk.htm.

[29] Anthony A Maciejewski and Charles A Klein. The singular value decomposi-
tion: Computation and applications to robotics. The International journal of
robotics research, 8(6):63–79, 1989.

[30] Giorgio Metta, Giulio Sandini, David Vernon, Lorenzo Natale, and Francesco
Nori. The icub humanoid robot: an open platform for research in embodied
cognition. In Proceedings of the 8th workshop on performance metrics for
intelligent systems, pages 50–56. ACM, 2008.

[31] Michael J Milford, Gordon F Wyeth, and DF Rasser. Ratslam: a hippocampal
model for simultaneous localization and mapping. In Robotics and Automa-
tion, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on,
volume 1, pages 403–408. IEEE, 2004.

[32] Monica N Nicolescu and Maja J Mataric. Natural methods for robot task
learning: Instructive demonstrations, generalization and practice. In Proceed-
ings of the second international joint conference on Autonomous agents and
multiagent systems, pages 241–248. ACM, 2003.

[33] Romeo Ortega and Mark W Spong. Adaptive motion control of rigid robots:
A tutorial. Automatica, 25(6):877–888, 1989.

[34] Donald L Peiper. The kinematics of manipulators under computer control.
Technical report, DTIC Document, 1968.

[35] Donald L. Peiper. The kinematics of manipulators under computer control.
Ph.d. dissertation, Stanford University of California, Department Of Com-
puter Science, 1968.

[36] Pramila Rani, Changchun Liu, Nilanjan Sarkar, and Eric Vanman. An empiri-
cal study of machine learning techniques for affect recognition in human–robot
interaction. Pattern Analysis and Applications, 9(1):58–69, 2006.

[37] René Felix Reinhart and Matthias Rolf. Learning versatile sensorimotor coor-
dination with goal babbling and neural associative dynamics. In Development
and Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint Inter-
national Conference on, pages 1–7. IEEE, 2013.

69

www.kuka-robotics.com/usa/en/products/industrial_robots/medium/kr60_3/
www.kuka-robotics.com/usa/en/products/industrial_robots/medium/kr60_3/
new.abb.com/products/robotics/de/industrieroboter/irb-360
new.abb.com/products/robotics/de/industrieroboter/irb-360
support.robotis.com/en/techsupport_eng.htm#software/dynamixelsdk.htm
support.robotis.com/en/techsupport_eng.htm#software/dynamixelsdk.htm

Bibliography

[38] Freese Rohmer, Singh. V-rep: a versatile and scalable robot simulation frame-
work. In Proc. of The International Conference on Intelligent Robots and
Systems (IROS), 2013.

[39] Raúl Rojas. Neural networks: a systematic introduction. Springer Science &
Business Media, 2013.

[40] Matthias Rolf. Goal babbling with unknown ranges: A direction-sampling ap-
proach. In 2013 IEEE International Conference on Development and Learn-
ing and Epigenetic Robotics (ICDL), pages 1–7, 2013. doi:10.1109/DevLrn.
2013.6652526.

[41] Matthias Rolf and Jochen J Steil. Efficient exploratory learning of inverse
kinematics on a bionic elephant trunk. IEEE Transactions on Neural Networks
and Learning Systems, 25(6):1147–1160, 2014.

[42] Matthias Rolf, Jochen J. Steil, and Michael Gienger. Goal babbling permits
direct learning of inverse kinematics. IEEE Transactions on Autonomous
Mental Development, 2(3):216–229, 2010. doi:10.1109/TAMD.2010.2062511.

[43] Matthias Rolf, Jochen J. Steil, and Michael Gienger. Online goal babbling
for rapid bootstrapping of inverse models in high dimensions. In 2011 IEEE
International Conference on Development and Learning (ICDL), pages 1–8,
2011. doi:10.1109/DEVLRN.2011.6037368.

[44] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[45] George A Rovithakis and Manolis A Christodoulou. Adaptive control with
recurrent high-order neural networks: theory and industrial applications.
Springer Science & Business Media, 2012.

[46] Ryo Saegusa, Giorgio Metta, Giulio Sandini, and Sophie Sakka. Active mo-
tor babbling for sensorimotor learning. In Robotics and Biomimetics, 2008.
ROBIO 2008. IEEE International Conference on, pages 794–799. IEEE, 2009.

[47] Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank
Sehnke, Thomas Rückstieß, and Jürgen Schmidhuber. PyBrain. Journal of
Machine Learning Research, 11:743–746, 2010.

[48] M. Schwarz, M. Schreiber, S. Schueller, M. Missura, and S. Behnke. Nimbro-
op humanoid teensize open platform. In Proceedings of 7th Workshop on
Humanoid Soccer Robots, volume 2012, 2012.

[49] Spong, Hutchinson, and Vidyasagar. Robot modeling and control. John Wiley
and Sons, 2006.

[50] Jörg Walter and Helge Ritter. Rapid learning with parametrized self-
organizing maps. Neurocomputing, 12(2):131–153, 1996.

70

http://dx.doi.org/10.1109/DevLrn.2013.6652526
http://dx.doi.org/10.1109/DevLrn.2013.6652526
http://dx.doi.org/10.1109/TAMD.2010.2062511
http://dx.doi.org/10.1109/DEVLRN.2011.6037368

Bibliography

[51] Herbert Werner. Lecture notes neural and genetic computing for control en-
gineering, 2013.

[52] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural net-
works: perceptron, madaline, and backpropagation. Proceedings of the IEEE,
78(9):1415–1442, 1990.

[53] William A Wolovich and H Elliott. A computational technique for inverse
kinematics. In Decision and Control, 1984. The 23rd IEEE Conference on,
pages 1359–1363. IEEE, 1984.

[54] Keenan A Wyrobek, Eric H Berger, HF Van der Loos, and J Kenneth Salis-
bury. Towards a personal robotics development platform: Rationale and de-
sign of an intrinsically safe personal robot. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 2165–2170. IEEE, 2008.

[55] Ganwen Zeng and Ahmad Hemami. An overview of robot force control. Robot-
ica, 15(05):473–482, 1997.

[56] Hui Zhang, Jianjun Wang, George Zhang, Zhongxue Gan, Zengxi Pan,
Hongliang Cui, and Zhenqi Zhu. Machining with flexible manipulator: toward
improving robotic machining performance. In Advanced Intelligent Mecha-
tronics. Proceedings, 2005 IEEE/ASME International Conference on, pages
1127–1132. IEEE, 2005.

[57] John G Ziegler and Nathaniel B Nichols. Optimum settings for automatic
controllers. trans. ASME, 64(11), 1942.

71

Acronyms

AIS Autonomous Intelligent Systems Institute

ANN artificial neural network

API application programming interface

CAD computer-aided design

dof degree of freedom

IK inverse kinematics

IR industrial robot

ML machine learning

MLP multi-layer perceptron

NICO Neural-inspired companion

NN neural network

PID proportianal-integral-derivative

ROK Republik of Korea

ROS robot operating system

SCARA selective compliance assembly robot arm

SGD stochastic gradient descent

URDF unified robot description format

USB universal serial bus

WTM Knowledge Technology Group

72

	1 Introduction
	2 Literature Review
	2.1 Towards Humanoid Robots
	2.2 NICO Humanoid Platform
	2.3 Fundamentals of Robot Control
	2.3.1 Forward and Inverse Kinematics of Manipulators
	2.3.2 Kinetics and Robot Control
	2.3.3 Trajectory Generation and Motion Planning

	2.4 Machine Learning Approaches
	2.4.1 Artificial Neural Networks
	2.4.2 Single-Layer Perceptrons
	2.4.3 Multilayer Perceptrons
	2.4.4 The Backpropagation Algoritm

	2.5 Learning Strategies for Inverse Kinematics
	2.5.1 Motor Babbling for Learning Kinematics
	2.5.2 Goal Babbling for Learning Kinematics

	3 Proposed Approach and Setup
	3.1 System Overview
	3.2 The Forward Model of the Robot Arm
	3.3 Aproaches for Learning Inverse Kinematics
	3.3.1 Learning Implications and Metrics
	3.3.2 Motor Babbling
	3.3.3 Goal Babbling
	3.3.4 Relative Inverse Kinematics
	3.3.5 Performance Testing

	3.4 Trajectory Generation for the Robot Arm
	3.4.1 Joint Space Move Commands
	3.4.2 Task Space Move Commands

	3.5 Structure and Training of the Neural Network

	4 Experimental Results
	4.1 Learning Inverse Kinematics
	4.1.1 Meta-Parameter Optimization
	4.1.2 Performance Using 3D Motor Babbling
	4.1.3 Performance Using 3D Goal Babbling
	4.1.4 Performance Using 6D Motor Babbling
	4.1.5 Performance Using 6D Goal Babbling
	4.1.6 Performance of the Relative IK Solution
	4.1.7 Performance in a Limited Workspace

	4.2 Evaluation of the IK Solutions in Simulation
	4.3 Evaluation Using the Real Robot

	5 Discussion
	A Nomenclature
	B Instructions for the Source Code
	Bibliography
	Acronyms

